Menu
July 7, 2019

Finished annotated genome sequence of Burkholderia pseudomallei strain Bp1651, a multidrug-resistant clinical isolate.

Burkholderia pseudomallei strain Bp1651, a human isolate, is resistant to all clinically relevant antibiotics. We report here on the finished genome sequence assembly and annotation of the two chromosomes of this strain. This genome sequence may assist in understanding the mechanisms of antimicrobial resistance for this pathogenic species. Copyright © 2015 Bugrysheva et al.


July 7, 2019

Complete genome sequences of 11 Bordetella pertussis strains representing the pandemic ptxP3 lineage.

Pathogen adaptation has contributed to the resurgence of pertussis. To facilitate our understanding of this adaptation we report here 11 completely closed and annotated Bordetella pertussis genomes representing the pandemic ptxP3 lineage. Our analyses included six strains which do not produce the vaccine components pertactin and/or filamentous hemagglutinin. Copyright © 2015 Bart et al.


July 7, 2019

Complete genome sequencing of Stenotrophomonas acidaminiphila ZAC14D2_NAIMI4_2, a multidrug-resistant strain isolated from sediments of a polluted river in Mexico, uncovers new antibiotic resistance genes and a novel class-II lasso peptide biosynthesis gene cluster.

Here, we report the first complete genome sequence of a Stenotrophomonas acidaminiphila strain, generated with PacBio RS II single-molecule real-time technology, consisting of a single circular chromosome of 4.13 Mb. We annotated mobile genetic elements and natural product biosynthesis clusters, including a novel class-II lasso peptide with a 7-residue macrolactam ring. Copyright © 2015 Vinuesa and Ochoa-Sánchez.


July 7, 2019

IncI1 plasmids encoding various blaCTX-Ms contributed to ceftriaxone resistance in Salmonella Enteritidis in China.

Resistance to extended spectrum ß-lactams in Salmonella, in particular serotypes such as S. Enteritidis that are frequently associated with clinical infections, is a serious public health concern. In this study, phenotypic characterization of 433 clinical S. Enteritidis strains obtained from a nationwide collection of China CDC during the period of 2005~2010 depicted an increasing trend of resistance to ceftriaxone from 2008 onwards. Seventeen (4%) of the strains were found to be resistant to ceftriaxone, 7% to ciprofloxacin and 0.7% to both ciprofloxacin and ceftriaxone. Most of the ceftriaxone-resistant S. Enteritidis strains (15/17) were genetically unrelated, and originated from Henan province. The complete sequence of an IncI1 plasmid pSE115 which belonged to a novel Sequence Type was obtained. This 87,255bp IncI1 plasmid was found to harbour a blaCTX-M-14 gene located in a novel Multidrug Resistance Region (MRR) within the tra locus. Although the majority of strains were also found to contain conjugative IncI1 plasmids of similar size to pSE115(~90kb) and harbor a variety of blaCTX-MGroup 1 and Group 9 elements, the novel MRR site at the tra locus in pSE115 was not detectable in the other IncI1 plasmids. Findings in this study show that cephalosporin resistance in S. Enteritidis strains collected in China was mainly due to dissemination of blaCTX-M-encoding IncI1 plasmids, resembling the situation in which IncI1 plasmids serve as major vectors of blaCTX-M variants in other members of Enterobacteriaceae. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Complete genome sequence of Pseudomonas aeruginosa PA1, isolated from a patient with a respiratory tract infection.

We report the 6,498,072-bp complete genome sequence of Pseudomonas aeruginosa PA1, which was isolated from a patient with a respiratory tract infection in Chongqing, People’s Republic of China. Whole-genome sequencing was performed using single-molecule real-time (SMRT) technology, and de novo assembly revealed a single contig with 396-fold sequence coverage. Copyright © 2015 Lu et al.


July 7, 2019

Molecular characterization using next generation sequencing of plasmids containing blaNDM-7 in Enterobacteriaceae from Calgary, Canada.

Enterobacteriaceae with blaNDM-7 is relatively uncommon and had previously been described in Europe, India, USA and Japan. This study describes the characteristics of Enterobacteriaceae [Klebsiella pneumoniae (n=2), Escherichia coli (n=2), Serratia marcescens (n=1), Enterobacter hormaechei (n=1)] with blaNDM-7 obtained in 4 patients from Calgary, Canada during 2013-4. The 46,161 bp IncX3 plasmids with blaNDM-7 are highly similar to other blaNDM-harboring IncX3 plasmids and interestingly, showed identical structures within the different isolates. This finding may indicate horizontal transmission within our health region or may indicate contact with individuals from endemic areas within the hospital setting. Patients infected or colonized with bacteria containing blaNDM-7 IncX3 plasmids will generate infection control challenges. Epidemiological and molecular studies are required to better understand the dynamics of transmission, risk factors and reservoirs for bacteria harboring blaNDM-7. To the best of our knowledge, this is the first report of S. marcescens, and E. hormaechei with blaNDM-7. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Next-generation sequencing and comparative analysis of sequential outbreaks caused by multidrug-resistant Acinetobacter baumannii at a large academic burn center.

Next-generation sequencing (NGS) analysis has emerged as a promising molecular epidemiological method for investigating health care-associated outbreaks. Here, we used NGS to investigate a 3-year outbreak of multidrug-resistant Acinetobacter baumannii (MDRAB) at a large academic burn center. A reference genome from the index case was generated using de novo assembly of PacBio reads. Forty-six MDRAB isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and sequenced using an Illumina platform. After mapping to the index case reference genome, four samples were excluded due to low coverage, leaving 42 samples for further analysis. Multilocus sequence types (MLST) and the presence of acquired resistance genes were also determined from the sequencing data. A transmission network was inferred from genomic and epidemiological data using a Bayesian framework. Based on single-nucleotide variant (SNV) differences, this MDRAB outbreak represented three sequential outbreaks caused by distinct clones. The first and second outbreaks were caused by sequence type 2 (ST2), while the third outbreak was caused by ST79. For the second outbreak, the MLST and PFGE results were discordant. However, NGS-based SNV typing detected a recombination event and consequently enabled a more accurate phylogenetic analysis. The distribution of resistance genes varied among the three outbreaks. The first- and second-outbreak strains possessed a blaOXA-23-like group, while the third-outbreak strains harbored a blaOXA-40-like group. NGS-based analysis demonstrated the superior resolution of outbreak transmission networks for MDRAB and provided insight into the mechanisms of strain diversification between sequential outbreaks through recombination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Complete genome sequence of Pandoraea oxalativorans DSM 23570(T), an oxalate metabolizing soil bacterium.

Pandoraea oxalativorans DSM 23570(T) is an oxalate-degrading bacterium that was originally isolated from soil litter near to oxalate-producing plant of the genus Oxalis. Here, we report the first complete genome of P. oxalativorans DSM 23570(T) which would allow its potential biotechnological applications to be unravelled. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Genome analysis of Kingella kingae strain KWG1 reveals how a ß-Lactamase gene inserted in the chromosome of this species.

We describe the genome of a penicillinase-producing Kingella kingae strain (KWG1), the first to be isolated in continental Europe, whose blaTEM-1 gene was, for the first time in this species, found to be chromosomally inserted. The blaTEM gene is located in an integrative and conjugative element (ICE) inserted in Met-tRNA and comprising genes that encode resistance to sulfonamides, streptomycin, and tetracycline. This ICE is homologous to resistance-conferring plasmids of K. kingae and other Gram-negative bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Complete sequence of conjugative IncA/C plasmid encoding CMY-2 ß-lactamase and RmtE 16S rRNA methyltransferase.

RmtE is a rare 16S-RMTase which was first reported in an aminoglycoside-resistant Escherichia coli strain of calf origin (1). Subsequently, we reported the first human case of infection caused by RmtE-producing E. coli (2). The rmtE gene is carried on a self-conjugative plasmid (pYDC637) in the latter strain. The present work aimed to elucidate the genetic context of rmtE. The sequencing approach has been described previously (3). In brief, the plasmid was extracted from an E. coli TOP10 transformant carrying pYDC637 and sequenced on a PacBio RS II sequencing instrument (Pacific Biosciences, Menlo Park, CA). Assembly was also conducted using the HGAP pipeline (Pacific Biosciences) as previously described (3).


July 7, 2019

Draft whole-genome sequences of nine non-O157 Shiga toxin-producing Escherichia coli strains.

Shiga toxin-producing Escherichia coli (STEC) is an important food-borne pathogen. Here, we report the draft whole-genome sequences of nine STEC strains isolated from clinical cases in the United States. This is the first report of such information for STEC of serotypes O69, H11, O145:H25, O118:H16, O91:H21, O146:H21, O45:H2, O128:H2, and O121:H19. Copyright © 2014 Lindsey et al.


July 7, 2019

Complete genome sequence of Vibrio parahaemolyticus environmental strain UCM-V493.

Vibrio parahaemolyticus is the leading bacterial cause of seafood-related gastroenteritis in the world. Here, we report the complete genome sequence and annotation of an environmental strain of V. parahaemolyticus, UCM-V493, with the aim of understanding the differences between the clinical and environmental isolates of the bacteria. We also make some preliminary sequence comparisons with the clinical strain RIMD2210633.


July 7, 2019

Complete genome sequences of nitrofurantoin-sensitive and -resistant Escherichia coli ST540 and ST2747 strains.

Widespread multidrug resistance in Escherichia coli has necessitated the reintroduction of older antibiotics, such as nitrofurantoin. However, mechanisms by which resistance to nitrofurantoin emerges in E. coli are not well elucidated. Toward this aim, we sequenced two nitrofurantoin-sensitive E. coli sequence types (ST540 and ST2747) and their four nitrofurantoin-resistant derivatives generated in vitro under aerobic and anaerobic growth conditions.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.