Menu
September 22, 2019

By land, air, and sea: hemipteran diversity through the genomic lens

Thanks to a recent spate of sequencing projects, the Hemiptera are the first hemimetabolous insect order to achieve a critical mass of species with sequenced genomes, establishing the basis for comparative genomics of the bugs. However, as the most speciose hemimetabolous order, there is still a vast swathe of the hemipteran phylogeny that awaits genomic representation across subterranean, terrestrial, and aquatic habitats, and with lineage-specific and developmentally plastic cases of both wing polyphenisms and flightlessness. In this review, we highlight opportunities for taxonomic sampling beyond obvious pest species candidates, motivated by intriguing biological features of certain groups as well as the rich research tradition of ecological, physiological, developmental, and particularly cytogenetic investigation that spans the diversity of the Hemiptera.


September 22, 2019

The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution.

The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary data sets. Analysis of this highly contiguous (chromosome-scale) assembly shows that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by polycomb repressive complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys’ unique biology and evolutionary/comparative perspective.


September 22, 2019

Transposon-associated lincosamide resistance lnu(C) gene identified in Brachyspira hyodysenteriae ST83.

Treatment of Swine Dysentery (SD) caused by Brachyspira hyodysenteriae (B. hyodysenteriae) is carried out using antimicrobials such as macrolides, lincosamides and pleuromutilins leading to the selection of resistant strains. Whole genome sequencing of a multidrug-resistant B. hyodysenteriae strain called BH718 belonging to sequence type (ST) 83 revealed the presence of the lincosamide resistance gene lnu(C) on the small 1724-bp transposon MTnSag1. The strain also contains an A to T substitution at position 2058 (A2058T) in the 23S rRNA gene which is known to be associated with macrolide and lincosamide resistance in B. hyodysenteriae. Testing of additional strains showed that those containing lnu(C) exhibited a higher minimal inhibitory concentration (MIC) of lincomycin (MIC?=?64?mg/L) compared to strains lacking lnu(C), even if they also harbor the A2058T mutation. Resistance to pleuromutilins could not be explained by the presence of already reported mutations in the 23S rRNA gene and in the ribosomal protein L3. This study shows that B. hyodysenteriae has the ability to acquire mobile genetic elements conferring resistance to antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019

Early transmissible ampicillin resistance in zoonotic Salmonella enterica serotype Typhimurium in the late 1950s: a retrospective, whole-genome sequencing study.

Ampicillin, the first semi-synthetic penicillin active against Enterobacteriaceae, was released onto the market in 1961. The first outbreaks of disease caused by ampicillin-resistant strains of Salmonella enterica serotype Typhimurium were identified in the UK in 1962 and 1964. We aimed to date the emergence of this resistance in historical isolates of S enterica serotype Typhimurium.In this retrospective, whole-genome sequencing study, we analysed 288 S enterica serotype Typhimurium isolates collected between 1911 and 1969 from 31 countries on four continents and from various sources including human beings, animals, feed, and food. All isolates were tested for antimicrobial drug susceptibility with the disc diffusion method, and isolates shown to be resistant to ampicillin underwent resistance-transfer experiments. To provide insights into population structure and mechanisms of ampicillin resistance, we did whole-genome sequencing on a subset of 225 isolates, selected to maximise source, spatiotemporal, and genetic diversity.11 (4%) of 288 isolates were resistant to ampicillin because of acquisition of various ß lactamase genes, including blaTEM-1, carried by various plasmids, including the virulence plasmid of S enterica serotype Typhimurium. These 11 isolates were from three phylogenomic groups. One isolate producing TEM-1 ß lactamase was isolated in France in 1959 and two isolates producing TEM-1 ß lactamase were isolated in Tunisia in 1960, before ampicillin went on sale. The vectors for ampicillin resistance were different from those reported in the strains responsible for the outbreaks in the UK in the 1960s.The association between antibiotic use and selection of resistance determinants is not as direct as often presumed. Our results suggest that the non-clinical use of narrow-spectrum penicillins (eg, benzylpenicillin) might have favoured the diffusion of plasmids carrying the blaTEM-1gene in S enterica serotype Typhimurium in the late 1950s.Institut Pasteur, Santé publique France, the French Government’s Investissement d’Avenir programme, the Fondation Le Roch-Les Mousquetaires. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019

LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons.

Long terminal repeat retrotransposons (LTR-RTs) are prevalent in plant genomes. The identification of LTR-RTs is critical for achieving high-quality gene annotation. Based on the well-conserved structure, multiple programs were developed for the de novo identification of LTR-RTs; however, these programs are associated with low specificity and high false discovery rates. Here, we report LTR_retriever, a multithreading-empowered Perl program that identifies LTR-RTs and generates high-quality LTR libraries from genomic sequences. LTR_retriever demonstrated significant improvements by achieving high levels of sensitivity (91%), specificity (97%), accuracy (96%), and precision (90%) in rice (Oryza sativa). LTR_retriever is also compatible with long sequencing reads. With 40k self-corrected PacBio reads equivalent to 4.5× genome coverage in Arabidopsis (Arabidopsis thaliana), the constructed LTR library showed excellent sensitivity and specificity. In addition to canonical LTR-RTs with 5′-TG…CA-3′ termini, LTR_retriever also identifies noncanonical LTR-RTs (non-TGCA), which have been largely ignored in genome-wide studies. We identified seven types of noncanonical LTRs from 42 out of 50 plant genomes. The majority of noncanonical LTRs areCopiaelements, with which the LTR is four times shorter than that of otherCopiaelements, which may be a result of their target specificity. Strikingly, non-TGCACopiaelements are often located in genic regions and preferentially insert nearby or within genes, indicating their impact on the evolution of genes and their potential as mutagenesis tools.© 2018 American Society of Plant Biologists. All Rights Reserved.


September 22, 2019

Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga.

Green algae represent a key segment of the global species capable of photoautotrophic-driven biological carbon fixation. Algae partition fixed-carbon into chemical compounds required for biomass, while diverting excess carbon into internal storage compounds such as starch and lipids or, in certain cases, into targeted extracellular compounds. Two green algae were selected to probe for critical components associated with sugar production and release in a model alga. Chlorella sorokiniana UTEX 1602 – which does not release significant quantities of sugars to the extracellular space – was selected as a control to compare with the maltose-releasing Micractinium conductrix SAG 241.80 – which was originally isolated from an endosymbiotic association with the ciliate Paramecium bursaria. Both strains were subjected to three sequencing approaches to assemble their genomes and annotate their genes. This analysis was further complemented with transcriptional studies during maltose release by M. conductrix SAG 241.80 versus conditions where sugar release is minimal. The annotation revealed that both strains contain homologs for the key components of a putative pathway leading to cytosolic maltose accumulation, while transcriptional studies found few changes in mRNA levels for the genes associated with these established intracellular sugar pathways. A further analysis of potential sugar transporters found multiple homologs for SWEETs and tonoplast sugar transporters. The analysis of transcriptional differences revealed a lesser and more measured global response for M. conductrix SAG 241.80 versus C. sorokiniana UTEX 1602 during conditions resulting in sugar release, providing a catalog of genes that might play a role in extracellular sugar transport.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


September 22, 2019

Unusual genomic traits suggest Methylocystis bryophila S285 to be well adapted for life in peatlands.

The genus Methylocystis belongs to the class Alphaproteobacteria, the family Methylocystaceae, and encompasses aerobic methanotrophic bacteria with the serine pathway of carbon assimilation. All Methylocystis species are able to fix dinitrogen and several members of this genus are also capable of using acetate or ethanol in the absence of methane, which explains their wide distribution in various habitats. One additional trait that enables their survival in the environment is possession of two methane-oxidizing isozymes, the conventional particulate methane monooxygenase (pMMO) with low-affinity to substrate (pMMO1) and the high-affinity enzyme (pMMO2). Here, we report the finished genome sequence of Methylocystis bryophila S285, a pMMO2-possessing methanotroph from a Sphagnum-dominated wetland, and compare it to the genome of Methylocystis sp. strain SC2, which is the first methanotroph with confirmed high-affinity methane oxidation potential. The complete genome of Methylocystis bryophila S285 consists of a 4.53?Mb chromosome and one plasmid, 175?kb in size. The genome encodes two types of particulate MMO (pMMO1 and pMMO2), soluble MMO and, in addition, contains a pxmABC-like gene cluster similar to that present in some gammaproteobacterial methanotrophs. The full set of genes related to the serine pathway, the tricarboxylic acid cycle as well as the ethylmalonyl-CoA pathway is present. In contrast to most described methanotrophs including Methylocystis sp. strain SC2, two different types of nitrogenases, that is, molybdenum-iron and vanadium-iron types, are encoded in the genome of strain S285. This unique combination of genome-based traits makes Methylocystis bryophila well adapted to the fluctuation of carbon and nitrogen sources in wetlands.© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


September 22, 2019

Sequence analysis of European maize inbred line F2 provides new insights into molecular and chromosomal characteristics of presence/absence variants.

Maize is well known for its exceptional structural diversity, including copy number variants (CNVs) and presence/absence variants (PAVs), and there is growing evidence for the role of structural variation in maize adaptation. While PAVs have been described in this important crop species, they have been only scarcely characterized at the sequence level and the extent of presence/absence variation and relative chromosomal landscape of inbred-specific regions remain to be elucidated.De novo genome sequencing of the French F2 maize inbred line revealed 10,044 novel genomic regions larger than 1 kb, making up 88 Mb of DNA, that are present in F2 but not in B73 (PAV). This set of maize PAV sequences allowed us to annotate PAV content and to analyze sequence breakpoints. Using PAV genotyping on a collection of 25 temperate lines, we also analyzed Linkage Disequilibrium in PAVs and flanking regions, and PAV frequencies within maize genetic groups.We highlight the possible role of MMEJ-type double strand break repair in maize PAV formation and discover 395 new genes with transcriptional support. Pattern of linkage disequilibrium within PAVs strikingly differs from this of flanking regions and is in accordance with the intuition that PAVs may recombine less than other genomic regions. We show that most PAVs are ancient, while some are found only in European Flint material, thus pinpointing structural features that may be at the origin of adaptive traits involved in the success of this material. Characterization of such PAVs will provide useful material for further association genetic studies in European and temperate maize.


September 22, 2019

Jointly aligning a group of DNA reads improves accuracy of identifying large deletions.

Performing sequence alignment to identify structural variants, such as large deletions, from genome sequencing data is a fundamental task, but current methods are far from perfect. The current practice is to independently align each DNA read to a reference genome. We show that the propensity of genomic rearrangements to accumulate in repeat-rich regions imposes severe ambiguities in these alignments, and consequently on the variant calls-with current read lengths, this affects more than one third of known large deletions in the C. Venter genome. We present a method to jointly align reads to a genome, whereby alignment ambiguity of one read can be disambiguated by other reads. We show this leads to a significant improvement in the accuracy of identifying large deletions (=20 bases), while imposing minimal computational overhead and maintaining an overall running time that is at par with current tools. A software implementation is available as an open-source Python program called JRA at https://bitbucket.org/jointreadalignment/jra-src.


September 22, 2019

Bat biology, genomes, and the Bat1K project: To generate chromosome-level genomes for all living bat species.

Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n~1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.


September 22, 2019

Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF.

Bacillus velezensis 157 was isolated from the bark of Eucommia ulmoides, and exhibited antagonistic activity against a broad spectrum of pathogenic bacteria and fungi. Moreover, B. velezensis 157 also showed various lignocellulolytic activities including cellulase, xylanase, a-amylase, and pectinase, which had the ability of using the agro-industrial waste (soybean meal, wheat bran, sugarcane bagasse, wheat straw, rice husk, maize flour and maize straw) under solid-state fermentation and obtained several industrially valuable enzymes. Soybean meal appeared to be the most efficient substrate for the single fermentation of B. velezensis 157. Highest yield of pectinase (19.15 ± 2.66 U g-1), cellulase (46.69 ± 1.19 U g-1) and amylase (2097.18 ± 15.28 U g-1) was achieved on untreated soybean meal. Highest yield of xylanase (22.35 ± 2.24 U g-1) was obtained on untreated wheat bran. Here, we report the complete genome sequence of the B. velezensis 157, composed of a circular 4,013,317 bp chromosome with 3789 coding genes and a G + C content of 46.41%, one circular 8439 bp plasmid and a G + C content of 40.32%. The genome contained a total of 8 candidate gene clusters (bacillaene, difficidin, macrolactin, butirosin, bacillibactin, bacilysin, fengycin and surfactin), and dedicates over 15.8% of the whole genome to synthesize secondary metabolite biosynthesis. In addition, the genes encoding enzymes involved in degradation of cellulose, xylan, lignin, starch, mannan, galactoside and arabinan were found in the B. velezensis 157 genome. Thus, the study of B. velezensis 157 broadened that B. velezensis can not only be used as biocontrol agents, but also has potentially a wide range of applications in lignocellulosic biomass conversion.


September 22, 2019

Insights on a founder effect: the case of Xylella fastidiosa in the Salento area of Apulia, Italy

Xylella fastidiosa causing disease on different plant species has been reported in several European countries, since 2013. Based on multilocus sequence typing (MLST) results, there is evidence of repeated introductions of the pathogen in Spain and France. In contrast, in the Salento area of Apulia (Puglia) in Southern Italy, the existence of a unique Apulian MLST genotype of X. fastidiosa, causing the olive quick decline syndrome (OQDS; also referred to as “CoDiRO” or “ST53”) was proven, and this was tentatively ascribed to X. fastidiosa subsp. pauca. In order to acquire information on intra population diversity European Food Safety Authority (EFSA) has strongly called for the characterization of X. fastidiosa isolates from Apulia to produce the necessary data to better understand strain diversity and evolution. In this work, for the first time the existence of sub-variants within a set of 14 “ST53” isolates of X. fastidiosa collected from different locations was searched using DNA typing methods targeting the whole pathogen genome. Invariably, VNTR, RAPD and rep-PCR (ERIC and BOX motifs) analyses indicated that all tested isolates possessed the same genomic fingerprint, supporting the existence of predominant epidemiological strain in Apulia. To further explore the degree of clonality within this population, two isolates from two different Salento areas (Taviano and Ugento) were completely sequenced using PacBio SMRT technology. The whole genome map and sequence comparisons revealed that both isolates are nearly identical, showing less than 0.001% nucleotide diversity. However, the complete and circularized Salento-1 and Salento-2 genome sequences were different, in genome and plasmid size, from the reference strain 9a5c of X. fastidiosa subsp. pauca (from citrus), and showed a PCR-proved large genome inversion of about 1.7 Mb. Genome-wide indices ANIm and dDDH indicated that the three isolates of X. fastidiosa from Salento (Apulia, Italy), namely Salento-1, Salento-2, and De Donno, whose complete genome sequence has been recently released, share a very recent common ancestor. This highlights the importance of continuous and extensive monitoring of molecular variation of this invasive pathogen to understand evolution of adaptive traits, and the necessity for adoption of all possible measures to reduce the risk of new introductions that may augment pathogen diversity.


September 22, 2019

Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve.

Bifidobacterium breve represents one of the most abundant bifidobacterial species in the gastro-intestinal tract of breast-fed infants, where their presence is believed to exert beneficial effects. In the present study whole genome sequencing, employing the PacBio Single Molecule, Real-Time (SMRT) sequencing platform, combined with comparative genome analysis allowed the most extensive genetic investigation of this taxon. Our findings demonstrate that genes encoding Restriction/Modification (R/M) systems constitute a substantial part of the B. breve variable gene content (or variome). Using the methylome data generated by SMRT sequencing, combined with targeted Illumina bisulfite sequencing (BS-seq) and comparative genome analysis, we were able to detect methylation recognition motifs and assign these to identified B. breve R/M systems, where in several cases such assignments were confirmed by restriction analysis. Furthermore, we show that R/M systems typically impose a very significant barrier to genetic accessibility of B. breve strains, and that cloning of a methyltransferase-encoding gene may overcome such a barrier, thus allowing future functional investigations of members of this species.


September 22, 2019

Biodegradation of decabromodiphenyl ether (BDE 209) by a newly isolated bacterium from an e-waste recycling area.

Polybrominated diphenyl ethers (PBDEs) have become widespread environmental pollutants all over the world. A newly isolated bacterium from an e-waste recycling area, Stenotrophomonas sp. strain WZN-1, can degrade decabromodiphenyl ether (BDE 209) effectively under aerobic conditions. Orthogonal test results showed that the optimum conditions for BDE 209 biodegradation were pH 5, 25 °C, 0.5% salinity, 150 mL minimal salt medium volume. Under the optimized condition, strain WZN-1 could degrade 55.15% of 65 µg/L BDE 209 under aerobic condition within 30 day incubation. Moreover, BDE 209 degradation kinetics was fitted to a first-order kinetics model. The biodegradation mechanism of BDE 209 by strain WZN-1 were supposed to be three possible metabolic pathways: debromination, hydroxylation, and ring opening processes. Four BDE 209 degradation genes, including one hydrolase, one dioxygenase and two dehalogenases, were identified based on the complete genome sequencing of strain WZN-1. The real-time qPCR demonstrated that the expression level of four identified genes were significantly induced by BDE 209, and they played an important role in the degradation process. This study is the first to demonstrate that the newly isolated Stenotrophomonas strain has an efficient BDE 209 degradation ability and would provide new insights for the microbial degradation of PBDEs.


September 22, 2019

Reference quality genome assemblies of three Parastagonospora nodorum isolates differing in virulence on wheat.

Parastagonospora nodorum, the causal agent of Septoria nodorum blotch in wheat, has emerged as a model necrotrophic fungal organism for the study of host-microbe interactions. To date, three necrotrophic effectors have been identified and characterized from this pathogen, including SnToxA, SnTox1, and SnTox3. Necrotrophic effector identification was greatly aided by the development of a draft genome of Australian isolate SN15 via Sanger sequencing, yet it remained largely fragmented. This research presents the development of nearly finished genomes of P. nodorum isolates Sn4, Sn2000, and Sn79-1087 using long-read sequencing technology. RNAseq analysis of isolate Sn4, consisting of eight time points covering various developmental and infection stages, mediated the annotation of 13,379 genes. Analysis of these genomes revealed large-scale polymorphism between the three isolates, including the complete absence of contig 23 from isolate Sn79-1087, and a region of genome expansion on contig 10 in isolates Sn4 and Sn2000. Additionally, these genomes exhibit the hallmark characteristics of a “two-speed” genome, being partitioned into two distinct GC-equilibrated and AT-rich compartments. Interestingly, isolate Sn79-1087 contains a lower proportion of AT-rich segments, indicating a potential lack of evolutionary hotspots. These newly sequenced genomes, consisting of telomere-to-telomere assemblies of nearly all 23 P. nodorum chromosomes, provide a robust foundation for the further examination of effector biology and genome evolution. Copyright © 2018 Richards et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.