fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Convergence of plasmid architectures drives emergence of multi-drug resistance in a clonally diverse Escherichia coli population from a veterinary clinical care setting.

The purpose of this study was to determine the plasmid architecture and context of resistance genes in multi-drug resistant (MDR) Escherichia coli strains isolated from urinary tract infections in dogs. Illumina and single-molecule real-time (SMRT) sequencing were applied to assemble the complete genomes of E. coli strains associated with clinical urinary tract infections, which were either phenotypically MDR or drug susceptible. This revealed that multiple distinct families of plasmids were associated with building an MDR phenotype. Plasmid-mediated AmpC (CMY-2) beta-lactamase resistance was associated with a clonal group of IncI1 plasmids that has remained stable in isolates collected up to a…

Read More »

Sunday, July 7, 2019

pSY153-MDR, a p12969-DIM-related mega plasmid carrying blaIMP-45 and armA, from clinical Pseudomonas putida.

This work characterized mega plasmid pSY153-MDR, carrying blaIMP-45 and armA, from a multidrug-resistant (MDR) Pseudomonas putida isolate from the urine of a cerebral infarction patient in China. The backbone of pSY153-MDR was closely related to Pseudomonas plasmids p12969-DIM, pOZ176, pBM413, pTTS12, and pRBL16, and could not be assigned to any of the known incompatibility groups. The accessory modules of pSY153-MDR were composed of 10 individual insertion sequence elements and two different MDR regions, and differed dramatically from the above plasmids. Fifteen non-redundant resistance markers were identified to be involved in resistance to at least eight distinct classes of antibiotics. All…

Read More »

Sunday, July 7, 2019

Remarkable diversity of Escherichia coli carrying mcr-1 from hospital sewage with the identification of two new mcr-1 variants.

The plasmid-borne colistin-resistant gene mcr-1 has rapidly become a worldwide public health concern. This study aims to determine the host bacterial strains, plasmids, and genetic contexts of mcr-1 in hospital sewage. A 1-ml hospital sewage sample was cultured. Colistin-resistant bacterial colonies were selected on agar plates and were subjected to whole genome sequencing and subsequent analysis. The transfer of mcr-1 between bacterial strains was tested using conjugation. New variants of mcr-1 were cloned to test the impact of variations on the function of mcr-1. Plasmids carrying mcr-1 were retrieved from GenBank for comparison based on concatenated backbone genes. In the…

Read More »

Sunday, July 7, 2019

Characterization of four multidrug resistance plasmids captured from the sediments of an urban coastal wetland.

Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches. Plasmid genomes, sequenced with either Illumina or PacBio platforms, revealed representatives of incompatibility groups IncP-6, IncR, IncN3, and IncF. The plasmids ranged in size from 36 to 144 kb and encoded known…

Read More »

Sunday, July 7, 2019

Rapid gene turnover as a significant source of genetic variation in a recently seeded population of a pathogen.

Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that…

Read More »

Sunday, July 7, 2019

RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum.

The Gram-positive bacterium Enterococcus faecium is a commensal of the human gastrointestinal tract and a frequent cause of bloodstream infections in hospitalized patients. The mechanisms by which E. faecium can survive and grow in blood during an infection have not yet been characterized. Here, we identify genes that contribute to growth of E. faecium in human serum through transcriptome profiling (RNA-seq) and a high-throughput transposon mutant library sequencing approach (Tn-seq).We first sequenced the genome of E. faecium E745, a vancomycin-resistant clinical isolate, using a combination of short- and long read sequencing, revealing a 2,765,010 nt chromosome and 6 plasmids, with sizes…

Read More »

Sunday, July 7, 2019

A blaOXA-181-harbouring multi-resistant ST147 Klebsiella pneumoniae isolate from Pakistan that represent an intermediate stage towards pan-drug resistance.

Carbapenem resistant Klebsiella pneumoniae (CR-KP) infections are an ever-increasing global issue, especially in the Indian subcontinent. Here we report genetic insight into a blaOXA-181 harbouring Klebsiella pneumoniae, belonging to the pandemic lineage ST147, that represents an intermediate stage towards pan-drug resistance. The CR-KP isolate DA48896 was isolated from a patient from Pakistan and was susceptible only to tigecycline and colistin. It harboured blaOXA-181 and was assigned to sequence type ST147. Analysis from whole genome sequencing revealed a very high sequence similarity to the previously sequenced pan-resistant K. pneumoniae isolate MS6671 from the United Arab Emirates. The two isolates are very…

Read More »

Sunday, July 7, 2019

Wide geographical dissemination of the multiresistant Staphylococcus capitis NRCS-A clone in neonatal intensive-care units.

Nosocomial late-onset sepsis represents a frequent cause of morbidity and mortality in preterm neonates. The Staphylococcus capitis clone NRCS-A has been previously described as an emerging cause of nosocomial bacteraemia in French neonatal intensive-care units (NICUs). In this study, we aimed to explore the possible unrecognized dissemination of this clone on a larger geographical scale. One hundred methicillin-resistant S. capitis strains isolated from neonates (n = 86) and adult patients (n = 14) between 2000 and 2013 in four different countries (France, Belgium, the UK, and Australia) were analysed with SmaI pulsed-field gel electrophoresis (PFGE) and dru typing. The vast majority of NICU strains showed…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Acinetobacter baumannii XH386 (ST208), a multi-drug resistant bacteria isolated from pediatric hospital in China.

Acinetobacter baumannii is an important bacterium that emerged as a significant nosocomial pathogen worldwide. The rise of A. baumannii was due to its multi-drug resistance (MDR), while it was difficult to treat multi-drug resistant A. baumannii with antibiotics, especially in pediatric patients for the therapeutic options with antibiotics were quite limited in pediatric patients. A. baumannii ST208 was identified as predominant sequence type of carbapenem resistant A. baumannii in the United States and China. As we knew, there was no complete genome sequence reproted for A. baumannii ST208, although several whole genome shotgun sequences had been reported. Here, we sequenced…

Read More »

Sunday, July 7, 2019

A phylogenetic and phenotypic analysis of Salmonella enterica serovar Weltevreden, an emerging agent of diarrheal disease in tropical regions.

Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other…

Read More »

Sunday, July 7, 2019

Whole genome sequence of Klebsiella pneumoniae U25, a hypermucoviscous, multidrug resistant, biofilm producing isolate from India.

Klebsiella pneumoniae U25 is a multidrug resistant strain isolated from a tertiary care hospital in Chennai, India. Here, we report the complete annotated genome sequence of strain U25 obtained using PacBio RSII. This is the first report of the whole genome of K. pneumoniaespecies from Chennai. It consists of a single circular chromosome of size 5,491,870-bp and two plasmids of size 211,813 and 172,619-bp. The genes associated with multidrug resistance were identified. The chromosome of U25 was found to have eight antibiotic resistant genes [blaOXA-1,blaSHV-28, aac(6′)1b-cr,catB3, oqxAB, dfrA1]. The plasmid pMGRU25-001 was found to have only one resistant gene (catA1)…

Read More »

Sunday, July 7, 2019

Population structure and acquisition of the vanB resistance determinant in German clinical isolates of Enterococcus faecium ST192.

In the context of the global action plan to reduce the dissemination of antibiotic resistances it is of utmost importance to understand the population structure of resistant endemic bacterial lineages and to elucidate how bacteria acquire certain resistance determinants. Vancomycin resistant enterococci represent one such example of a prominent nosocomial pathogen on which nation-wide population analyses on prevalent lineages are scarce and data on how the bacteria acquire resistance, especially of the vanB genotype, are still under debate. With respect to Germany, an increased prevalence of VRE was noted in recent years. Here, invasive infections caused by sequence type ST192…

Read More »

Sunday, July 7, 2019

Complete genome sequence analysis of Pandoraea pnomenusa type strain DSM 16536(T) isolated from a cystic fibrosis patient.

The genus of Pandoraea was first proposed in 2000 following the isolation from the sputum of cystic fibrosis patients (Coenye et al., 2000). Five species were initially assigned to the novel genus namely Pandoraea apista, Pandoraea pulmonicola, Pandoraea pnomenusa, Pandoraea sputorum, and Pandoraea norimbergensis but the description of four new species and another four genomospecies in the subsequent years led to a total of nine species and four genomospecies within the genus of Pandoraea (Daneshvar et al., 2001; Anandham et al., 2010; Sahin et al., 2011). The isolation of Pandoraea spp. from various environmental samples such as water, sludge, and…

Read More »

Sunday, July 7, 2019

Antibiotic resistance mechanisms of Myroides sp.

Bacteria of the genus Myroides (Myroides spp.) are rare opportunistic pathogens. Myroides sp. infections have been reported mainly in China. Myroides sp. is highly resistant to most available antibiotics, but the resistance mechanisms are not fully elucidated. Current strain identification methods based on biochemical traits are unable to identify strains accurately at the species level. While 16S ribosomal RNA (rRNA) gene sequencing can accurately achieve this, it fails to give information on the status and mechanisms of antibiotic resistance, because the 16S rRNA sequence contains no information on resistance genes, resistance islands or enzymes. We hypothesized that obtaining the whole…

Read More »

Sunday, July 7, 2019

Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.

Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly…

Read More »

1 5 6 7 8

Subscribe for blog updates:

Archives