Menu
July 7, 2019  |  

Convergence of plasmid architectures drives emergence of multi-drug resistance in a clonally diverse Escherichia coli population from a veterinary clinical care setting.

The purpose of this study was to determine the plasmid architecture and context of resistance genes in multi-drug resistant (MDR) Escherichia coli strains isolated from urinary tract infections in dogs. Illumina and single-molecule real-time (SMRT) sequencing were applied to assemble the complete genomes of E. coli strains associated with clinical urinary tract infections, which were either phenotypically MDR or drug susceptible. This revealed that multiple distinct families of plasmids were associated with building an MDR phenotype. Plasmid-mediated AmpC (CMY-2) beta-lactamase resistance was associated with a clonal group of IncI1 plasmids that has remained stable in isolates collected up to a decade apart. Other plasmids, in particular those with an IncF replicon type, contained other resistance gene markers, so that the emergence of these MDR strains was driven by the accumulation of multiple plasmids, up to 5 replicons in specific cases. This study indicates that vulnerable patients, often with complex clinical histories provide a setting leading to the emergence of MDR E. coli strains in clonally distinct commensal backgrounds. While it is known that horizontally-transferred resistance supplements uropathogenic strains of E. coli such as ST131, our study demonstrates that the selection of an MDR phenotype in commensal E. coli strains can result in opportunistic infections in vulnerable patient populations. These strains provide a reservoir for the onward transfer of resistance alleles into more typically pathogenic strains and provide opportunities for the coalition of resistance and virulence determinants on plasmids as evidenced by the IncF replicons characterised in this study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.


July 7, 2019  |  

pSY153-MDR, a p12969-DIM-related mega plasmid carrying blaIMP-45 and armA, from clinical Pseudomonas putida.

This work characterized mega plasmid pSY153-MDR, carrying blaIMP-45 and armA, from a multidrug-resistant (MDR) Pseudomonas putida isolate from the urine of a cerebral infarction patient in China. The backbone of pSY153-MDR was closely related to Pseudomonas plasmids p12969-DIM, pOZ176, pBM413, pTTS12, and pRBL16, and could not be assigned to any of the known incompatibility groups. The accessory modules of pSY153-MDR were composed of 10 individual insertion sequence elements and two different MDR regions, and differed dramatically from the above plasmids. Fifteen non-redundant resistance markers were identified to be involved in resistance to at least eight distinct classes of antibiotics. All of these resistance genes were associated with mobile elements, and were embedded within the two MDR regions. blaIMP-45 and armA coexisted in a Tn1403-Tn1548 region, which was generated from homologous recombination of Tn1403- and Tn1548-like transposons. The second copy of armA was a component of the ISCR28-armA-?ISCR28 structure, representing a novel armA vehicle. This vehicle was located within In48, which was related to In363 and In1058. Data presented here provide a deeper insight into the evolutionary history of SY153, especially in regard to how it became extensively drug-resistant.


July 7, 2019  |  

Remarkable diversity of Escherichia coli carrying mcr-1 from hospital sewage with the identification of two new mcr-1 variants.

The plasmid-borne colistin-resistant gene mcr-1 has rapidly become a worldwide public health concern. This study aims to determine the host bacterial strains, plasmids, and genetic contexts of mcr-1 in hospital sewage. A 1-ml hospital sewage sample was cultured. Colistin-resistant bacterial colonies were selected on agar plates and were subjected to whole genome sequencing and subsequent analysis. The transfer of mcr-1 between bacterial strains was tested using conjugation. New variants of mcr-1 were cloned to test the impact of variations on the function of mcr-1. Plasmids carrying mcr-1 were retrieved from GenBank for comparison based on concatenated backbone genes. In the sewage sample, we observed that mcr-1 was located in various genetic contexts on the chromosome, or plasmids of four different replicon types (IncHI2, IncI2, IncP, and IncX4), in Klebsiella pneumoniae, Kluyvera spp. and seven Escherichia coli strains of six different sequence types (ST10, ST34, ST48, ST1196, ST7086, and ST7087). We also identified two new variants of mcr-1, mcr-1.4 and mcr-1.7, both of which encode an amino acid variation from mcr-1. mcr-1-carrying IncX4 plasmids, which have a global distribution across the Enterobacteriaceae, are the result of global dissemination of a single common plasmid, while IncI2 mcr-1 plasmids appear to acquire mcr-1 in multiple events. In conclusion, the unprecedented remarkable diversity of species, strains, plasmids, and genetic contexts carrying mcr-1 present in a single sewage sample from a single healthcare site highlights the continued evolution and dynamic transmission of mcr-1 in healthcare-associated environments.


July 7, 2019  |  

Characterization of four multidrug resistance plasmids captured from the sediments of an urban coastal wetland.

Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches. Plasmid genomes, sequenced with either Illumina or PacBio platforms, revealed representatives of incompatibility groups IncP-6, IncR, IncN3, and IncF. The plasmids ranged in size from 36 to 144 kb and encoded known resistance genes for most of the major classes of antibiotics used to treat Gram-negative infections (tetracyclines, sulfonamides, ß-lactams, fluoroquinolones, aminoglycosides, and amphenicols). The mobilizable IncP-6 plasmid pLNU-11 was discovered in a strain of Citrobacter freundii enriched from the wetland sediments with tetracycline and nalidixic acid, and encodes a novel AmpC-like ß-lactamase (blaWDC-1), which shares less than 62% amino acid sequence identity with the PDC class of ß-lactamases found in Pseudomonas aeruginosa. Although the IncR plasmid pTRE-1611 was captured by mating wetland bacteria with P. putida KT2440 as recipient, it was found to be mobilizable rather than self-transmissible. Two self-transmissible multidrug-resistance plasmids were also captured: the small (48 kb) IncN3 plasmid pTRE-131 was captured by mating wetland bacteria with Escherichia coli HY842 where it is seemed to be maintained at nearly 240 copies per cell, while the large (144 kb) IncF plasmid pTRE-2011, which was isolated from a cefotaxime-resistant environmental strain of E. coli ST744, exists at just a single copy per cell. Furthermore, pTRE-2011 bears the globally epidemic blaCTX-M-55 extended-spectrum ß-lactamase downstream of ISEcp1. Our results indicate that urban coastal wetlands are reservoirs of diverse self-transmissible and mobilizable plasmids of relevance to human health.


July 7, 2019  |  

Rapid gene turnover as a significant source of genetic variation in a recently seeded population of a pathogen.

Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that on average the Mexican strains differed from each other by over 300 genes and, notably, this gene content variation has accrued more frequently and faster than the accumulation of mutations. Moreover, due to its rapid pace, gene content variation reflects the phylogeny only at very short periods of time. Additionally, we found that the external branches of the phylogeny had almost 100 more genes than the internal branches. All in all, these results show that rapid gene turnover has been of paramount importance in producing genetic variation within this population and demonstrate the utility of genome sequencing to study alternative forms of genetic variation.


July 7, 2019  |  

RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum.

The Gram-positive bacterium Enterococcus faecium is a commensal of the human gastrointestinal tract and a frequent cause of bloodstream infections in hospitalized patients. The mechanisms by which E. faecium can survive and grow in blood during an infection have not yet been characterized. Here, we identify genes that contribute to growth of E. faecium in human serum through transcriptome profiling (RNA-seq) and a high-throughput transposon mutant library sequencing approach (Tn-seq).We first sequenced the genome of E. faecium E745, a vancomycin-resistant clinical isolate, using a combination of short- and long read sequencing, revealing a 2,765,010 nt chromosome and 6 plasmids, with sizes ranging between 9.3 kbp and 223.7 kbp. We then compared the transcriptome of E. faecium E745 during exponential growth in rich medium and in human serum by RNA-seq. This analysis revealed that 27.8% of genes on the E. faecium E745 genome were differentially expressed in these two conditions. A gene cluster with a role in purine biosynthesis was among the most upregulated genes in E. faecium E745 upon growth in serum. The E. faecium E745 transposon mutant library was then used to identify genes that were specifically required for growth of E. faecium in serum. Genes involved in de novo nucleotide biosynthesis (including pyrK_2, pyrF, purD, purH) and a gene encoding a phosphotransferase system subunit (manY_2) were thus identified to be contributing to E. faecium growth in human serum. Transposon mutants in pyrK_2, pyrF, purD, purH and manY_2 were isolated from the library and their impaired growth in human serum was confirmed. In addition, the pyrK_2 and manY_2 mutants were tested for their virulence in an intravenous zebrafish infection model and exhibited significantly attenuated virulence compared to E. faecium E745.Genes involved in carbohydrate metabolism and nucleotide biosynthesis of E. faecium are essential for growth in human serum and contribute to the pathogenesis of this organism. These genes may serve as targets for the development of novel anti-infectives for the treatment of E. faecium bloodstream infections.


July 7, 2019  |  

A blaOXA-181-harbouring multi-resistant ST147 Klebsiella pneumoniae isolate from Pakistan that represent an intermediate stage towards pan-drug resistance.

Carbapenem resistant Klebsiella pneumoniae (CR-KP) infections are an ever-increasing global issue, especially in the Indian subcontinent. Here we report genetic insight into a blaOXA-181 harbouring Klebsiella pneumoniae, belonging to the pandemic lineage ST147, that represents an intermediate stage towards pan-drug resistance. The CR-KP isolate DA48896 was isolated from a patient from Pakistan and was susceptible only to tigecycline and colistin. It harboured blaOXA-181 and was assigned to sequence type ST147. Analysis from whole genome sequencing revealed a very high sequence similarity to the previously sequenced pan-resistant K. pneumoniae isolate MS6671 from the United Arab Emirates. The two isolates are very closely related with only 46 chromosomal nucleotide differences, 14 indels and differences in plasmid content. Both carry a substantial number of plasmid-borne and chromosomally encoded resistance determinants. Interestingly, the two differences in susceptibility between the isolates could be attributed to DA48896 lacking an insertion of blaOXA-181 into the mgrB gene that results in colistin resistance in MS6671 and SNPs affecting AcrAB efflux pump expression likely to result in tigecycline resistance. These differences between the otherwise very similar isolates indicate that strong selection has occurred for resistance towards these last-resort drugs and illustrates the trajectory of resistance evolution of OXA-181-producing versions of the ST147 international risk clone.


July 7, 2019  |  

Wide geographical dissemination of the multiresistant Staphylococcus capitis NRCS-A clone in neonatal intensive-care units.

Nosocomial late-onset sepsis represents a frequent cause of morbidity and mortality in preterm neonates. The Staphylococcus capitis clone NRCS-A has been previously described as an emerging cause of nosocomial bacteraemia in French neonatal intensive-care units (NICUs). In this study, we aimed to explore the possible unrecognized dissemination of this clone on a larger geographical scale. One hundred methicillin-resistant S. capitis strains isolated from neonates (n = 86) and adult patients (n = 14) between 2000 and 2013 in four different countries (France, Belgium, the UK, and Australia) were analysed with SmaI pulsed-field gel electrophoresis (PFGE) and dru typing. The vast majority of NICU strains showed the NRCS-A pulsotype and the dt11c type (96%). We then randomly selected 14 isolates (from neonates, n = 12, three per country; from adult patients, n = 2), considered to be a subset of representative isolates, and performed further molecular typing (SacII PFGE, SCCmec typing, and multilocus sequence typing-like analysis), confirming the clonality of the S. capitis strains isolated from neonates, despite their distant geographical origin. Whole genome single-nucleotide polymorphism-based phylogenetic analysis of five NICU isolates (from the different countries) attested to high genetic relatedness within the NRCS-A clone. Finally, all of the NRCS-A strains showed multidrug resistance (e.g. methicillin and aminoglycoside resistance, and decreased vancomycin susceptibility), with potential therapeutic implications for infected neonates. In conclusion, this study represents the first report of clonal dissemination of methicillin-resistant coagulase-negative Staphylococcus clone on a large geographical scale. Questions remain regarding the origin and means of international spread, and the reasons for this clone’s apparent predilection for neonates. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Acinetobacter baumannii XH386 (ST208), a multi-drug resistant bacteria isolated from pediatric hospital in China.

Acinetobacter baumannii is an important bacterium that emerged as a significant nosocomial pathogen worldwide. The rise of A. baumannii was due to its multi-drug resistance (MDR), while it was difficult to treat multi-drug resistant A. baumannii with antibiotics, especially in pediatric patients for the therapeutic options with antibiotics were quite limited in pediatric patients. A. baumannii ST208 was identified as predominant sequence type of carbapenem resistant A. baumannii in the United States and China. As we knew, there was no complete genome sequence reproted for A. baumannii ST208, although several whole genome shotgun sequences had been reported. Here, we sequenced the 4087-kilobase (kb) chromosome and 112-kb plasmid of A. baumannii XH386 (ST208), which was isolated from a pediatric hospital in China. The genome of A. baumannii XH386 contained 3968 protein-coding genes and 94 RNA-only encoding genes. Genomic analysis and Minimum inhibitory concentration assay showed that A. baumannii XH386 was multi-drug resistant strain, which showed resistance to most of antibiotics, except for tigecycline. The data may be accessed via the GenBank accession number CP010779 and CP010780.


July 7, 2019  |  

A phylogenetic and phenotypic analysis of Salmonella enterica serovar Weltevreden, an emerging agent of diarrheal disease in tropical regions.

Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies.


July 7, 2019  |  

Whole genome sequence of Klebsiella pneumoniae U25, a hypermucoviscous, multidrug resistant, biofilm producing isolate from India.

Klebsiella pneumoniae U25 is a multidrug resistant strain isolated from a tertiary care hospital in Chennai, India. Here, we report the complete annotated genome sequence of strain U25 obtained using PacBio RSII. This is the first report of the whole genome of K. pneumoniaespecies from Chennai. It consists of a single circular chromosome of size 5,491,870-bp and two plasmids of size 211,813 and 172,619-bp. The genes associated with multidrug resistance were identified. The chromosome of U25 was found to have eight antibiotic resistant genes [blaOXA-1,blaSHV-28, aac(6′)1b-cr,catB3, oqxAB, dfrA1]. The plasmid pMGRU25-001 was found to have only one resistant gene (catA1) while plasmid pMGRU25-002 had 20 resistant genes [strAB, aadA1,aac(6′)-Ib, aac(3)-IId,sul1,2, blaTEM-1A,1B,blaOXA-9, blaCTX-M-15,blaSHV-11, cmlA1, erm(B),mph(A)]. A mutation in the porin OmpK36 was identified which is likely to be associated with the intermediate resistance to carbapenems in the absence of carbapenemase genes. U25 is one of the few K. pneumoniaestrains to harbour clustered regularly interspaced short palindromic repeats (CRISPR) systems. Two CRISPR arrays corresponding to Cas3 family helicase were identified in the genome. When compared to K. pneumoniaeNTUHK2044, a transposase gene InsH of IS5-13 was found inserted.


July 7, 2019  |  

Population structure and acquisition of the vanB resistance determinant in German clinical isolates of Enterococcus faecium ST192.

In the context of the global action plan to reduce the dissemination of antibiotic resistances it is of utmost importance to understand the population structure of resistant endemic bacterial lineages and to elucidate how bacteria acquire certain resistance determinants. Vancomycin resistant enterococci represent one such example of a prominent nosocomial pathogen on which nation-wide population analyses on prevalent lineages are scarce and data on how the bacteria acquire resistance, especially of the vanB genotype, are still under debate. With respect to Germany, an increased prevalence of VRE was noted in recent years. Here, invasive infections caused by sequence type ST192 VRE are often associated with the vanB-type resistance determinant. Hence, we analyzed 49 vanB-positive and vanB-negative E. faecium isolates by means of whole genome sequencing. Our studies revealed a distinct population structure and that spread of the Tn1549-vanB-type resistance involves exchange of large chromosomal fragments between vanB-positive and vanB-negative enterococci rather than independent acquisition events. In vitro filter-mating experiments support the hypothesis and suggest the presence of certain target sequences as a limiting factor for dissemination of the vanB element. Thus, the present study provides a better understanding of how enterococci emerge into successful multidrug-resistant nosocomial pathogens.


July 7, 2019  |  

Complete genome sequence analysis of Pandoraea pnomenusa type strain DSM 16536(T) isolated from a cystic fibrosis patient.

The genus of Pandoraea was first proposed in 2000 following the isolation from the sputum of cystic fibrosis patients (Coenye et al., 2000). Five species were initially assigned to the novel genus namely Pandoraea apista, Pandoraea pulmonicola, Pandoraea pnomenusa, Pandoraea sputorum, and Pandoraea norimbergensis but the description of four new species and another four genomospecies in the subsequent years led to a total of nine species and four genomospecies within the genus of Pandoraea (Daneshvar et al., 2001; Anandham et al., 2010; Sahin et al., 2011). The isolation of Pandoraea spp. from various environmental samples such as water, sludge, and soils have been reported, but to date, only P. pnomenusa, P. apista, P. pulmonicola, and P. sputorum were isolated from clinical specimens such as blood, sputum and bronchial fluid of patients with cystic fibrosis or chronic lung diseases (Coenye et al., 2000; Daneshvar et al., 2001; Stryjewski et al., 2003; Han-Jen et al., 2013). Members of Pandoraea tend to exhibit broad resistance to ampicillin, extended-spectrum cephalosporins, aztreonam, aminoglycosides, and meropenem but they are sensitive to imipenem (Daneshvar et al., 2001; Stryjewski et al., 2003). However, the clinical significance and prevalence of these multi-drug resistant bacteria among patients with cystic fibrosis or respiratory diseases remained unknown since Pandoraea spp. are usually misidentified as Burkholderia cepacia complex, Ralstonia pickettii, or Ralstonia paucula (Segonds et al., 2003). Ambiguity in differentiating between B. cepacia complex, Ralstonia spp. and Pandoraea spp. can be resolved by 16S ribosomal DNA-PCR (Coenye et al., 2001) and gyrB gene restriction fragment length polymorphism (Coenye and LiPuma, 2002) but the limited use of molecular typing methods in routine clinical microbiological laboratory has resulted in the underreporting of Pandoraea spp. in clinical cases.


July 7, 2019  |  

Antibiotic resistance mechanisms of Myroides sp.

Bacteria of the genus Myroides (Myroides spp.) are rare opportunistic pathogens. Myroides sp. infections have been reported mainly in China. Myroides sp. is highly resistant to most available antibiotics, but the resistance mechanisms are not fully elucidated. Current strain identification methods based on biochemical traits are unable to identify strains accurately at the species level. While 16S ribosomal RNA (rRNA) gene sequencing can accurately achieve this, it fails to give information on the status and mechanisms of antibiotic resistance, because the 16S rRNA sequence contains no information on resistance genes, resistance islands or enzymes. We hypothesized that obtaining the whole genome sequence of Myroides sp., using next generation sequencing methods, would help to clarify the mechanisms of pathogenesis and antibiotic resistance, and guide antibiotic selection to treat Myroides sp. infections. As Myroides sp. can survive in hospitals and the environment, there is a risk of nosocomial infections and pandemics. For better management of Myroides sp. infections, it is imperative to apply next generation sequencing technologies to clarify the antibiotic resistance mechanisms in these bacteria.


July 7, 2019  |  

Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.

Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.