Menu
July 7, 2019  |  

Horizontal transfer of carbapenemase-encoding plasmids and comparison with hospital epidemiology data.

Carbapenemase-producing organisms have spread worldwide, and infections with these bacteria cause significant morbidity. Horizontal transfer of plasmids that encode carbapenemases plays an important role in the spread of multidrug resistant Gram-negative bacteria. Here we investigate parameters regulating conjugation using an E. coli laboratory strain that lacks plasmids or restriction-enzyme modification systems as a recipient and also using patient isolates as donors and recipients. Because conjugation is tightly regulated, we performed a systematic analysis of the transfer of Klebsiella pneumoniae carbapenemase (blaKPC)-encoding plasmids into multiple strains under different environmental conditions to investigate critical variables. We used four blaKPC-plasmids isolated from patient strains obtained from two hospitals: pKpQIL and pKPC-47e from the National Institutes of Health, and pKPC_UVA01 and pKPC_UVA02 from the University of Virginia. Plasmid transfer frequency differed substantially between different donor and recipient pairs, and was influenced by plasmid content, temperature, and substrate, in addition to donor and recipient strain. pKPC-47e was attenuated in conjugation efficiency across all conditions tested. Despite its presence in multiple clinical species, pKPC_UVA01 had lower conjugation efficiencies than pKpQIL into recipient strains. The conjugation frequency of these plasmids into K. pneumoniae and E. coli patient isolates ranged widely without a clear correlation with clinical epidemiological data. Our results highlight the importance of each variable examined in these controlled experiments. The in vitro models did not reliably predict plasmid mobilization observed in a patient population, indicating that further studies are needed to understand the most important variables affecting horizontal transfer in vivo. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain.

Klebsiella pneumoniae subsp. pneumoniae KP617 is a pathogenic strain that coproduces OXA-232 and NDM-1 carbapenemases. We sequenced the genome of KP617, which was isolated from the wound of a Korean burn patient, and performed a comparative genomic analysis with three additional strains: PittNDM01, NUHL24835 and ATCC BAA-2146.The complete genome of KP617 was obtained via multi-platform whole-genome sequencing. Phylogenetic analysis along with whole genome and multi-locus sequence typing of genes of the Klebsiella pneumoniae species showed that KP617 belongs to the WGLW2 group, which includes PittNDM01 and NUHL24835. Comparison of annotated genes showed that KP617 shares 98.3 % of its genes with PittNDM01. Nineteen antibiotic resistance genes were identified in the KP617 genome: bla OXA-1 and bla SHV-28 in the chromosome, bla NDM-1 in plasmid 1, and bla OXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found. We identified 117 virulence factors in the KP617 genome, and discovered that the genes encoding these factors were also harbored by the reference strains; eight genes were lipopolysaccharide-related and four were capsular polysaccharide-related. A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain.Whole-genome sequencing and bioinformatics analysis revealed similarity in the genome sequences and content, and differences in phage-related genes, plasmids and antimicrobial resistance genes between KP617 and the references. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.


July 7, 2019  |  

The complete genome of Dietzia timorensis ID05-A0528(T) revealed the genetic basis for its saline-alkali tolerance.

The type strain Dietzia timorensis ID05-A0528(T), was reported to be able to survive in the highly saline and alkaline environments with diverse carbon sources. In order to more pertinently understand the genetic mechanisms of its environmental tolerance and crude oil emulsification, we reported the complete genome sequence of the strain in the study. The genome contains only one circular chromosome, with the total size of 3,607,892 bps, and the G+C content of this strain is 65.58%, much lower than other type strains of this genus. It was found that strain ID05-A0528(T) contains genes involved in transportation and biosynthesis of compatible solutes, as well as genes encoding monovalent cation/proton antiporters, which could explain its abilities to tolerate high salinity and alkalinity. Various central metabolic routes and complete alkane hydroxylation pathway were also identified in the genome of strain ID05-A0528(T), which is in accordance with its ability to use a wide spectrum of carbon sources and to degrade n-alkanes. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Multiplication of blaOXA-23 is common in clinical Acinetobacter baumannii, but does not enhance carbapenem resistance.

To investigate the copy number of blaOXA-23 and its correlation with carbapenem resistance in carbapenem-resistant Acinetobacter baumannii (CRAB).A total of 113 blaOXA-23-positive clinical CRAB isolates were collected from two hospitals in Zhejiang province, China. Their genetic relatedness was determined by MLST. The MIC of imipenem was determined using the agar diffusion method and the copy number of blaOXA-23 was measured using quantitative real-time PCR (qRT-PCR). The complete genomes of five clinical CRAB strains were sequenced using PacBio technology to investigate the multiplication mechanism of blaOXA-23.Most of the isolates (100/113) belonged to global clone II and the MIC of imipenem ranged from 16 to 96 mg/L. The gene blaOXA-23 resided exclusively in Tn2006 or Tn2009. Approximately 38% of the isolates carried two or more copies of blaOXA-23. The copy number of blaOXA-23 was not correlated with the MIC of imipenem. Within the five sequenced strains, multiple copies of blaOXA-23 were either tandemly clustered or independently inserted at different genomic sites.Multiplication of blaOXA-23 is common in CRAB, but does not enhance carbapenem resistance. Multiplication can be present in the form of either tandem amplifications or independent insertions at different sites.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Genomic analyses of multidrug resistant Pseudomonas aeruginosa PA1 resequenced by single-molecule real-time sequencing.

As a third-generation sequencing (TGS) method, single-molecule real-time (SMRT) technology provides long read length, and it is well suited for resequencing projects and de novo assembly. In the present study, Pseudomonas aeruginosa PA1 was characterized and resequenced using SMRT technology. PA1 was also subjected to genomic, comparative and pan-genomic analyses. The multidrug resistant strain PA1 possesses a 6,498,072 bp genome and a sequence type of ST-782. The genome of PA1 was also visualized, and the results revealed the details of general genome annotations, virulence factors, regulatory proteins (RPs), secretion system proteins, type II toxin-antitoxin (T-A) pairs and genomic islands. Whole genome comparison analysis suggested that PA1 exhibits similarity to other P. aeruginosa strains but differs in terms of horizontal gene transfer (HGT) regions, such as prophages and genomic islands. Phylogenetic analyses based on 16S rRNA sequences demonstrated that PA1 is closely related to PAO1, and P. aeruginosa strains can be divided into two main groups. The pan-genome of P. aeruginosa consists of a core genome of approximately 4,000 genes and an accessory genome of at least 6,600 genes. The present study presented a detailed, visualized and comparative analysis of the PA1 genome, to enhance our understanding of this notorious pathogen. © 2016 The Author(s).


July 7, 2019  |  

Pathogenesis of multi drug-resistant and extensively drug-resistant tuberculosis as a determinant of future treatment success.

Multidrug-resistant (MDR)/extensively drug-resistant (XDR) tuberculosis (TB) is a significant threat to global TB control [1]. In most cases, treatment of MDR/XDR TB is not standardized, and clinicians have adopted a variety of treatment strategies. These strategies include switching to a regimen of new drugs, increasing the dosage of the same drugs, rarely used drugs (which have widespread resistance), etc. Drug resistance is a manmade phenomenon that is driven by treatment strategy (i.e., regimen). These divergent approaches may differentially drive the evolution of bacteria. Some instances of this evolution have already occurred [2]. The community’s focus has been on drug resistance; therefore, the consequence of this divergence is usually by different mechanisms of resistance [2] and [3]. However, the full scope of the consequential microevolution frequently goes unnoticed because it also affects important factors such as fitness and virulence. In this study, we aimed to develop a comprehensive understanding of the consequences of differential TB treatment to build more accurate prognostics for future treatments.


July 7, 2019  |  

Evolution and comparative genomics of F33:A-:B- plasmids carrying blaCTX-M-55 or blaCTX-M-65 in Escherichia coli and Klebsiella pneumoniae isolated from animals.

To understand the underlying evolution process of F33:A-:B- plasmids among Enterobacteriaceae isolates of various origins in China, the complete sequences of 17 blaCTX-M-harboring F33:A-:B- plasmids obtained from Escherichia coli and Klebsiella pneumoniae isolates from different sources (animals, animal-derived food, and human clinics) in China were determined. F33:A-:B- plasmids shared similar plasmid backbones comprising replication, leading, and conjugative transfer regions and differed by the numbers of repeats in yddA and traD and by the presence of group II intron, except that pHNAH9 lacked a large segment of the leading and transfer regions. The variable regions of F33:A-B- plasmids were distinct and were inserted downstream of the addiction system pemI/pemK, identified as the integration hot spot among F33:A-B- plasmids. The variable region contained resistance genes and mobile elements or contained segments from other types of plasmids, such as IncI1, IncN1, and IncX1. Three plasmids encoding CTX-M-65 were very similar to our previously described pHN7A8 plasmid. Four CTX-M-55-producing plasmids contained multidrug resistance regions related to that of F2:A-B- plasmid pHK23a from Hong Kong. Five plasmids with IncN and/or IncX replication regions and IncI1-backbone fragments had variable regions related to those of pE80 and p42-2. The remaining five plasmids with IncN replicons and an IncI1 segment also possessed closely related variable regions. The diversity in variable regions was presumably associated with rearrangements, insertions, and/or deletions mediated by mobile elements, such as IS26 and IS1294 IMPORTANCE Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A-:B- plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A-:B- plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A-:B- plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes. Copyright © 2018 Wang et al.


July 7, 2019  |  

Complete and assembled genome sequence of an NDM-5- and CTX-M-15-producing Escherichia coli sequence type 617 isolated from wastewater in Switzerland.

Carbapenem-resistant Escherichia coli have emerged worldwide and represent a major challenge to effective healthcare management. Here we report the genome sequence of an NDM-5- and CTX-M-15-producing E. coli belonging to sequence type 617 isolated from wastewater treatment plant effluent in Switzerland.Whole-genome sequencing of E. coli 657SK2 was performed using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) technology RS2 reads (C4/P6 chemistry). De novo assembly was carried out using Canu 1.6, and sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP).The genome of E. coli 657SK2 consists of a 4.9-Mbp chromosome containing blaCTX-M-15, genes associated with virulence [fyuA, hlyE, the pyelonephritis-associated pili (pap) gene cluster and the yad gene cluster], the copper resistance gene pco, and genes associated with resistance to quaternary ammonium compound (QAC) disinfectants (emrA, mdfA and sugE). A 173.9-kb multidrug resistance IncFII-FIA-FIB plasmid was detected harbouring aadA2, aadA5, blaNDM-5, blaOXA-1, cat, drfA, drfA17, the mph(A)-mrx-mphR cluster, the tetA-tetC-tetR cluster, and the virulence genes iutA and ylpA.The genome sequence of E. coli 657SK2 provides information on resistance mechanisms and virulence characteristics of pathogenic E. coli harbouring blaNDM-5 and blaCTX-M-15 that are spreading into the environment via urban wastewater.Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Complete genome sequence of the multidrug-resistant neonatal meningitis Escherichia coli serotype O75:H5:K1 strain mcjchv-1 (NMEC-O75).

Neonatal meningitis Escherichia coli (NMEC) is the second leading cause of neonatal bacterial meningitis worldwide. We report the genome sequence of the multidrug-resistant NMEC serotype O75:H5:K1 strain mcjchv-1, which resulted in an infant’s death. The O75 serogroup is rare among NMEC isolates; therefore, this strain is considered an emergent pathogen.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.