Menu
July 7, 2019  |  

The plastid genome in Cladophorales green algae is encoded by hairpin chromosomes.

Virtually all plastid (chloroplast) genomes are circular double-stranded DNA molecules, typically between 100 and 200 kb in size and encoding circa 80-250 genes. Exceptions to this universal plastid genome architecture are very few and include the dinoflagellates, where genes are located on DNA minicircles. Here we report on the highly deviant chloroplast genome of Cladophorales green algae, which is entirely fragmented into hairpin chromosomes. Short- and long-read high-throughput sequencing of DNA and RNA demonstrated that the chloroplast genes of Boodlea composita are encoded on 1- to 7-kb DNA contigs with an exceptionally high GC content, each containing a long inverted repeat with one or two protein-coding genes and conserved non-coding regions putatively involved in replication and/or expression. We propose that these contigs correspond to linear single-stranded DNA molecules that fold onto themselves to form hairpin chromosomes. The Boodlea chloroplast genes are highly divergent from their corresponding orthologs, and display an alternative genetic code. The origin of this highly deviant chloroplast genome most likely occurred before the emergence of the Cladophorales, and coincided with an elevated transfer of chloroplast genes to the nucleus. A chloroplast genome that is composed only of linear DNA molecules is unprecedented among eukaryotes, and highlights unexpected variation in plastid genome architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

The complete mitochondrial genome of Wonwhang (Pyrus pyrifolia)

This is a de novo assembly and annotation of a complete mitochondrial genome from Pyrus pyrifolia in the family Rosaceae. The complete mitochondrial genome of P. pyrifolia was assembled from PacBio RSII P6-C4 sequencing reads. The circular genome was 458,873?bp in length, containing 39 protein-coding genes, 23 tRNA genes and three rRNA genes. The nucleotide composition was A (27.5%), T (27.3%), G (22.6%) and C (22.6%) with GC content of 45.2%. Most of protein-coding genes use the canonical start codon ATG, whereas nad1, cox1, matR and rps4 use ACG, mttB uses ATT, rpl16 and rps19 uses GTG. The stop codon is also common in all mitochondrial genes. The phylogenetic analysis showed that P. pyrifolia was clustered with the Malus of Rosaceae family. Maximum-likelihood analysis suggests a clear relationship of Rosids and Asterids, which support the traditional classification.


July 7, 2019  |  

Letting go: bacterial genome reduction solves the dilemma of adapting to predation mortality in a substrate-restricted environment.

Resource limitation and predation mortality are major determinants of microbial population dynamics, and optimization for either aspect is considered to imply a trade-off with respect to the other. Adaptation to these selective factors may, moreover, lead to disadvantages at rich growth conditions. We present an example of a concomitant evolutionary optimization to both, substrate limitation and predation in an aggregate-forming freshwater bacterial isolate, and we elucidate an underlying genomic mechanism. Bacteria were propagated in serial batch culture in a nutrient-restricted environment either with or without a bacterivorous flagellate. Strains isolated after 26 growth cycles of the predator-prey co-cultures formed as much total biomass as the ancestor at ancestral growth conditions, albeit largely reallocated to cell aggregates. A ~273?kbp genome fragment was lost in three strains that had independently evolved with predators. These strains had significantly higher growth yield on substrate-restricted media than others that were isolated from the same treatment before the excision event. Under predation pressure, the isolates with the deletion outcompeted both, the ancestor and the strains evolved without predators even at rich growth conditions. At the same time, genome reduction led to a growth disadvantage in the presence of benzoate due to the loss of the respective degradation pathway, suggesting that niche constriction might be the price for the bidirectional optimization.


July 7, 2019  |  

Glaucophyta

The Glaucophyta is by far the least species-rich phylum of the Archaeplastida comprising only four described genera, Glaucocystis, Cyanophora, Gloeochaete, and Cyanoptyche, and 15 species. However, recent molecular and morphological analyses reveal that glaucophytes are not as species poor as hitherto assumed with many novel lineages existing in natural environments. Glaucophytes are freshwater phototrophs of moderate to low abundance and retain many ancestral plastid traits derived from the cyanobacterial donor of this organelle, including the remnant peptidoglycan wall in their envelope. These plastids were originally named “cyanelles,” which was later changed to “muroplasts” when their shared ancestry with other Archaeplastida was recognized. The model glaucophyte, Cyanophora paradoxa, is well studied with respect to biochemistry, proteomics, and the gene content of the nuclear and organelle genomes. Investigation of the biosynthesis of cytosolic starch led to a model for the transition from glycogen to starch storage during plastid endosymbiosis. The photosynthetic apparatus, including phycobilisome antennae, resembles that of cyanobacteria. However, the carbon-concentrating mechanism is algal in nature and based on pyrenoids. Studies on protein import into muroplasts revealed a primordial Toc/Tic translocon. The peptidoglycan wall was elucidated with respect to composition, biosynthesis, and involvement of nuclear genes. The muroplast genome is distinct, not due to the number of encoded genes but, rather, because of the presence of unique genes not present on other plastid genomes. The mosaic nature of the gene-rich (27,000) nuclear genome came as a surprise, considering the relatively small genomes of unicellular red algae.


July 7, 2019  |  

The complete mitochondrial genome sequence of the ascomycete plant pathogen Colletotrichum acutatum.

Collectotrichum acutatum is a fungal plant pathogen that causes pre- and post-harvest anthracnose on a wide range of plants worldwide. The complete mitochondrial genome of C. acutatum has been determined for the first time. This study revealed that the mitogenome of C. acutatum is a closed circular molecule of 30 892?bp in length, with a G?+?C content of 34.7%, which include 15 protein-coding genes, 22 tRNA genes, and two rRNA genes. All the protein-coding genes, accounting for 46.6% of the C. acutatum mitogenome, start with the standard ATG codon and end with the TAA termination codon except for nad6 gene using the TAG termination codon. The mitogenome information of C. acutatum can provide molecular basis for further studies on molecular systematics and evolutionary dynamics.


July 7, 2019  |  

Coevolution between Nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity.

Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems.© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Large-scale mitogenomics enables insights into Schizophora (Diptera) radiation and population diversity.

True flies are insects of the order Diptera and encompass one of the most diverse groups of animals on Earth. Within dipterans, Schizophora represents a recent radiation of insects that was used as a model to develop a pipeline for generating complete mitogenomes using various sequencing platforms and strategies. 91 mitogenomes from 32 different species were sequenced and assembled with high fidelity, using amplicon, whole genome shotgun or single molecule sequencing approaches. Based on the novel mitogenomes, we estimate the origin of Schizophora within the Cretaceous-Paleogene (K-Pg) boundary, about 68.3?Ma. Detailed analyses of the blowfly family (Calliphoridae) place its origin at 22?Ma, concomitant with the radiation of grazing mammals. The emergence of ectoparasitism within calliphorids was dated 6.95?Ma for the screwworm fly and 2.3?Ma for the Australian sheep blowfly. Varying population histories were observed for the blowfly Chrysomya megacephala and the housefly Musca domestica samples in our dataset. Whereas blowflies (n?=?50) appear to have undergone selective sweeps and/or severe bottlenecks in the New World, houseflies (n?=?14) display variation among populations from different zoogeographical zones and low levels of gene flow. The reported high-throughput mitogenomics approach for insects enables new insights into schizophoran diversity and population history of flies.


July 7, 2019  |  

Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts.

Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.


July 7, 2019  |  

The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis.

A majority of Ardisia species harbour Burkholderia sp. bacteria within specialized leaf nodules. The bacteria are transmitted hereditarily and have not yet been cultured outside of their host. Because the plants cannot develop beyond the seedling stage without their symbionts, the symbiosis is considered obligatory. We sequenced for the first time the genome of Candidatus Burkholderia crenata (Ca. B. crenata), the leaf nodule symbiont of Ardisia crenata. The genome of Ca. B. crenata is the smallest Burkholderia genome to date. It contains a large amount of insertion sequences and pseudogenes and displays features consistent with reductive genome evolution. The genome does not encode functions commonly associated with plant symbioses such as nitrogen fixation and plant hormone metabolism. However, we identified unique genes with a predicted role in secondary metabolism in the genome of Ca. B. crenata. Specifically, we provide evidence that the bacterial symbionts are responsible for the synthesis of compound FR900359, a cyclic depsipeptide with biomedical properties previously isolated from leaves of A.?crenata. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes.

Lentinula edodes, the popular shiitake mushroom, is one of the most important cultivated edible mushrooms. It is used as a food and for medicinal purposes. Here, we present the 46.1Mb draft genome of L. edodes, comprising 13,028 predicted gene models. The genome assembly consists of 31 scaffolds. Gene annotation provides key information about various signaling pathways and secondary metabolites. This genomic information should help establish the molecular genetic markers for MAS/MAB and increase our understanding of the genome structure and function. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Understanding the genetics of APOE and TOMM40 and role of mitochondrial structure and function in clinical pharmacology of Alzheimer’s disease.

The methodology of Genome-Wide Association Screening (GWAS) has been applied for more than a decade. Translation to clinical utility has been limited, especially in Alzheimer’s Disease (AD). It has become standard practice in the analyses of more than two dozen AD GWAS studies to exclude the apolipoprotein E (APOE) region because of its extraordinary statistical support, unique thus far in complex human diseases. New genes associated with AD are proposed frequently based on SNPs associated with odds ratio (OR) < 1.2. Most of these SNPs are not located within the associated gene exons or introns but are located variable distances away. Often pathologic hypotheses for these genes are presented, with little or no experimental support. By eliminating the analyses of the APOE-TOMM40 linkage disequilibrium region, the relationship and data of several genes that are co-located in that LD region have been largely ignored. Early negative interpretations limited the interest of understanding the genetic data derived from GWAS, particularly regarding the TOMM40 gene. This commentary describes the history and problem(s) in interpretation of the genetic interrogation of the "APOE" region and provides insight into a metabolic mitochondrial basis for the etiology of AD using both APOE and TOMM40 genetics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Genome sequence and analysis of a stress-tolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research

The genome sequences of more than 100 strains of the yeast Saccharomyces cerevisiae have been published. Unfortunately, most of these genome assemblies contain dozens to hundreds of gaps at repetitive sequences, including transposable elements, tRNAs, and subtelomeric regions, which is where novel genes generally reside. Relatively few strains have been chosen for genome sequencing based on their biofuel production potential, leaving an additional knowledge gap. Here, we describe the nearly complete genome sequence of GLBRCY22-3 (Y22-3), a strain of S. cerevisiae derived from the stress-tolerant wild strain NRRL YB-210 and subsequently engineered for xylose metabolism. After benchmarking several genome assembly approaches, we developed a pipeline to integrate Pacific Biosciences (PacBio) and Illumina sequencing data and achieved one of the highest quality genome assemblies for any S. cerevisiae strain. Specifically, the contig N50 is 693 kbp, and the sequences of most chromosomes, the mitochondrial genome, and the 2-micron plasmid are complete. Our annotation predicts 92 genes that are not present in the reference genome of the laboratory strain S288c, over 70% of which were expressed. We predicted functions for 43 of these genes, 28 of which were previously uncharacterized and unnamed. Remarkably, many of these genes are predicted to be involved in stress tolerance and carbon metabolism and are shared with a Brazilian bioethanol production strain, even though the strains differ dramatically at most genetic loci. The Y22-3 genome sequence provides an exceptionally high-quality resource for basic and applied research in bioenergy and genetics. Copyright © 2016 McIlwain et al.


July 7, 2019  |  

Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.

This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.


July 7, 2019  |  

Complete mitochondrial genome sequence of the pezizomycete Pyronema confluens.

The complete mitochondrial genome of the ascomycete Pyronema confluens has been sequenced. The circular genome has a size of 191 kb and contains 48 protein-coding genes, 26 tRNA genes, and two rRNA genes. Of the protein-coding genes, 14 encode conserved mitochondrial proteins, and 31 encode predicted homing endonuclease genes. Copyright © 2016 Nowrousian.


July 7, 2019  |  

Selfish drive can trump function when animal mitochondrial genomes compete.

Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.