Menu
September 22, 2019

The methylome of the gut microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei

Despite the large interest in the human microbiome in recent years, there are no reports of bacterial DNA methylation in the microbiome. Here metagenomic sequencing using the Pacific Biosciences platform allowed for rapid identification of bacterial GATC methylation status of a bacterial species in human stool samples. For this work, two stool samples were chosen that were dominated by a single species, Bacteroides dorei. Based on 16S rRNA analysis, this species represented over 45% of the bacteria present in these two samples. The B. dorei genome sequence from these samples was determined and the GATC methylation sites mapped. The Bacteroides dorei genome from one subject lacked any GATC methylation and lacked the DNA adenine methyltransferase genes. In contrast, B. dorei from another subject contained 20,551 methylated GATC sites. Of the 4970 open reading frames identified in the GATC methylated B. dorei genome, 3184 genes were methylated as well as 1735 GATC methylations in intergenic regions. These results suggest that DNA methylation patterns are important to consider in multi-omic analyses of microbiome samples seeking to discover the diversity of bacterial functions and may differ between disease states.


September 22, 2019

Genome-wide characterization of human L1 antisense promoter-driven transcripts.

Long INterspersed Element-1 (LINE-1 or L1) is the only autonomously active, transposable element in the human genome. L1 sequences comprise approximately 17 % of the human genome, but only the evolutionarily recent, human-specific subfamily is retrotransposition competent. The L1 promoter has a bidirectional orientation containing a sense promoter that drives the transcription of two proteins required for retrotransposition and an antisense promoter. The L1 antisense promoter can drive transcription of chimeric transcripts: 5′ L1 antisense sequences spliced to the exons of neighboring genes.The impact of L1 antisense promoter activity on cellular transcriptomes is poorly understood. To investigate this, we analyzed GenBank ESTs for messenger RNAs that initiate in the L1 antisense promoter. We identified 988 putative L1 antisense chimeric transcripts, 911 of which have not been previously reported. These appear to be alternative genic transcripts, sense-oriented with respect to gene and initiating near, but typically downstream of, the gene transcriptional start site. In multiple cell lines, L1 antisense promoters display enrichment for YY1 transcription factor and histone modifications associated with active promoters. Global run-on sequencing data support the activity of the L1 antisense promoter. We independently detected 124 L1 antisense chimeric transcripts using long read Pacific Biosciences RNA-seq data. Furthermore, we validated four chimeric transcripts by quantitative RT-PCR and Sanger sequencing and demonstrated that they are readily detectable in many normal human tissues.We present a comprehensive characterization of human L1 antisense promoter-driven transcripts and provide substantial evidence that they are transcribed in a variety of human cell-types. Our findings reveal a new wide-reaching aspect of L1 biology by identifying antisense transcripts affecting as many as 4 % of all human genes.


September 22, 2019

Defining cell identity with single cell omics.

Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems.© 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


September 22, 2019

Bypassing the Restriction System To Improve Transformation of Staphylococcus epidermidis.

Staphylococcus epidermidis is the leading cause of infections on indwelling medical devices worldwide. Intrinsic antibiotic resistance and vigorous biofilm production have rendered these infections difficult to treat and, in some cases, require the removal of the offending medical prosthesis. With the exception of two widely passaged isolates, RP62A and 1457, the pathogenesis of infections caused by clinical S. epidermidis strains is poorly understood due to the strong genetic barrier that precludes the efficient transformation of foreign DNA into clinical isolates. The difficulty in transforming clinical S. epidermidis isolates is primarily due to the type I and IV restriction-modification systems, which act as genetic barriers. Here, we show that efficient plasmid transformation of clinical S. epidermidis isolates from clonal complexes 2, 10, and 89 can be realized by employing a plasmid artificial modification (PAM) in Escherichia coli DC10B containing a ?dcm mutation. This transformative technique should facilitate our ability to genetically modify clinical isolates of S. epidermidis and hence improve our understanding of their pathogenesis in human infections.IMPORTANCEStaphylococcus epidermidis is a source of considerable morbidity worldwide. The underlying mechanisms contributing to the commensal and pathogenic lifestyles of S. epidermidis are poorly understood. Genetic manipulations of clinically relevant strains of S. epidermidis are largely prohibited due to the presence of a strong restriction barrier. With the introductions of the tools presented here, genetic manipulation of clinically relevant S. epidermidis isolates has now become possible, thus improving our understanding of S. epidermidis as a pathogen. Copyright © 2017 American Society for Microbiology.


September 22, 2019

Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853.

Pseudomonas aeruginosa ATCC 27853 was isolated from a hospital blood specimen in 1971 and has been widely used as a model strain to survey antibiotics susceptibilities, biofilm development, and metabolic activities of Pseudomonas spp.. Although four draft genomes of P. aeruginosa ATCC 27853 have been sequenced, the complete genome of this strain is still lacking, hindering a comprehensive understanding of its physiology and functional genome.Here we sequenced and assembled the complete genome of P. aeruginosa ATCC 27853 using the Pacific Biosciences SMRT (PacBio) technology and Illumina sequencing platform. We found that accessory genes of ATCC 27853 including prophages and genomic islands (GIs) mainly contribute to the difference between P. aeruginosa ATCC 27853 and other P. aeruginosa strains. Seven prophages were identified within the genome of P. aeruginosa ATCC 27853. Of the predicted 25 GIs, three contain genes that encode monoxoygenases, dioxygenases and hydrolases that could be involved in the metabolism of aromatic compounds. Surveying virulence-related genes revealed that a series of genes that encode the B-band O-antigen of LPS are lacking in ATCC 27853. Distinctive SNPs in genes of cellular adhesion proteins such as type IV pili and flagella biosynthesis were also observed in this strain. Colony morphology analysis confirmed an enhanced biofilm formation capability of ATCC 27853 on solid agar surface compared to Pseudomonas aeruginosa PAO1. We then performed transcriptome analysis of ATCC 27853 and PAO1 using RNA-seq and compared the expression of orthologous genes to understand the functional genome and the genomic details underlying the distinctive colony morphogenesis. These analyses revealed an increased expression of genes involved in cellular adhesion and biofilm maturation such as type IV pili, exopolysaccharide and electron transport chain components in ATCC 27853 compared with PAO1. In addition, distinctive expression profiles of the virulence genes lecA, lasB, quorum sensing regulators LasI/R, and the type I, III and VI secretion systems were observed in the two strains.The complete genome sequence of P. aeruginosa ATCC 27853 reveals the comprehensive genetic background of the strain, and provides genetic basis for several interesting findings about the functions of surface associated proteins, prophages, and genomic islands. Comparative transcriptome analysis of P. aeruginosa ATCC 27853 and PAO1 revealed several classes of differentially expressed genes in the two strains, underlying the genetic and molecular details of several known and yet to be explored morphological and physiological potentials of P. aeruginosa ATCC 27853.


September 22, 2019

Genomic microdiversity of Bifidobacterium pseudocatenulatum underlying differential strain-level responses to dietary carbohydrate intervention.

The genomic basis of the response to dietary intervention of human gut beneficial bacteria remains elusive, which hinders precise manipulation of the microbiota for human health. After receiving a dietary intervention enriched with nondigestible carbohydrates for 105 days, a genetically obese child with Prader-Willi syndrome lost 18.4% of his body weight and showed significant improvement in his bioclinical parameters. We obtained five isolates (C1, C15, C55, C62, and C95) of one of the most abundantly promoted beneficial species, Bifidobacterium pseudocatenulatum, from a postintervention fecal sample. Intriguingly, these five B. pseudocatenulatum strains showed differential responses during the dietary intervention. Two strains were largely unaffected, while the other three were promoted to different extents by the changes in dietary carbohydrate resources. The differential responses of these strains were consistent with their functional clustering based on the COGs (Clusters of Orthologous Groups), including those involved with the ABC-type sugar transport systems, suggesting that the strain-specific genomic variations may have contributed to the niche adaption. Particularly, B. pseudocatenulatum C15, which had the most diverse types and highest gene copy numbers of carbohydrate-active enzymes targeting plant polysaccharides, had the highest abundance after the dietary intervention. These studies show the importance of understanding genomic diversity of specific members of the gut microbiota if precise nutrition approaches are to be realized.IMPORTANCE The manipulation of the gut microbiota via dietary approaches is a promising option for improving human health. Our findings showed differential responses of multiple B. pseudocatenulatum strains isolated from the same habitat to the dietary intervention, as well as strain-specific correlations with bioclinical parameters of the host. The comparative genomics revealed a genome-level microdiversity of related functional genes, which may have contributed to these differences. These results highlight the necessity of understanding strain-level differences if precise manipulation of gut microbiota through dietary approaches is to be realized. Copyright © 2017 Wu et al.


September 22, 2019

Complete genome sequence of Geobacillus thermodenitrificans T12, a potential host for biotechnological applications.

In attempt to obtain a thermophilic host for the conversion of lignocellulose derived substrates into lactic acid, Geobacillus thermodenitrificans T12 was isolated from a compost heap. It was selected from over 500 isolates as a genetically tractable hemicellulolytic lactic acid producer, requiring little nutrients. The strain is able to ferment glucose and xylose simultaneously and can produce lactic acid from xylan, making it a potential host for biotechnological applications. The genome of strain T12 consists of a 3.64 Mb chromosome and two plasmids of 59 and 56 kb. It has a total of 3.676 genes with an average genomic GC content of 48.7%. The T12 genome encodes a denitrification pathway, allowing for anaerobic respiration. The identity and localization of the responsible genes are similar to those of the denitrification pathways found in strain NG80-2. The hemicellulose utilization (HUS) locus was identified based on sequence homology against G. stearothermophilus T-6. It appeared that T12 has all the genes that are present in strain T-6 except for the arabinan degradation cluster. Instead, the HUS locus of strain T12 contains genes for both an inositol and a pectate degradation pathway. Strain T12 has complete pathways for the synthesis of purine and pyrimidine, all 20 amino acids and several vitamins except D-biotin. The host-defense systems present comprise a Type II and a Type III restriction-modification system, as well as a CRISPR-Cas Type II system. It is concluded that G. thermodenitrificans T12 is a potentially interesting candidate for industrial applications.


September 22, 2019

The novel phages phiCD5763 and phiCD2955 represent two groups of big plasmidial Siphoviridae phages of Clostridium difficile.

Until recently, Clostridium difficile phages were limited to Myoviruses and Siphoviruses of medium genome length (32–57 kb). Here we report the finding of phiCD5763, a Siphovirus with a large extrachromosomal circular genome (132.5 kb, 172 ORFs) and a large capsid (205.6 ± 25.6 nm in diameter) infecting MLST Clade 1 strains of C. difficile. Two subgroups of big phage genomes similar to phiCD5763 were identified in 32 NAPCR1/RT012/ST-54 C. difficile isolates from Costa Rica and in whole genome sequences (WGS) of 41 C. difficile isolates of Clades 1, 2, 3, and 4 from Canada, USA, UK, Belgium, Iraq, and China. Through comparative genomics we discovered another putative big phage genome in a non-NAPCR1 isolate from Costa Rica, phiCD2955, which represents other big phage genomes found in 130 WGS of MLST Clade 1 and 2 isolates from Canada, USA, Hungary, France, Austria, and UK. phiCD2955 (131.6 kb, 172 ORFs) is related to a previously reported C. difficile phage genome, phiCD211/phiCDIF1296T. Detailed genome analyses of phiCD5763, phiCD2955, phiCD211/phiCDIF1296T, and seven other putative C. difficile big phage genome sequences of 131–136 kb reconstructed from publicly available WGS revealed a modular gene organization and high levels of sequence heterogeneity at several hotspots, suggesting that these genomes correspond to biological entities undergoing recombination. Compared to other C. difficile phages, these big phages have unique predicted terminase, capsid, portal, neck and tail proteins, receptor binding proteins (RBPs), recombinases, resolvases, primases, helicases, ligases, and hypothetical proteins. Moreover, their predicted gene load suggests a complex regulation of both phage and host functions. Overall, our results indicate that the prevalence of C. difficile big bacteriophages is more widespread than realized and open new avenues of research aiming to decipher how these viral elements influence the biology of this emerging pathogen.


September 22, 2019

Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, extremely thermophilic archaeon with a highly mobile genome.

Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated in hot springs. Here we present the first enrichment of a thermophilic representative with a sequenced genome, which facilitates the search for adaptive strategies and for traits that shape the evolution of Thaumarchaeota.CandidatusNitrosocaldus cavascurensis has been enriched from a hot spring in Ischia, Italy. It grows optimally at 68°C under chemolithoautotrophic conditions on ammonia or urea converting ammonia stoichiometrically into nitrite with a generation time of approximately 23 h. Phylogenetic analyses based on ribosomal proteins place the organism as a sister group to all known mesophilic AOA. The 1.58 Mb genome ofCa.N. cavascurensis harbors anamoAXCB gene cluster encoding ammonia monooxygenase and genes for a 3-hydroxypropionate/4-hydroxybutyrate pathway for autotrophic carbon fixation, but also genes that indicate potential alternative energy metabolisms. Although abona fidegene for nitrite reductase is missing, the organism is sensitive to NO-scavenging, underlining the potential importance of this compound for AOA metabolism.Ca.N. cavascurensis is distinct from all other AOA in its gene repertoire for replication, cell division and repair. Its genome has an impressive array of mobile genetic elements and other recently acquired gene sets, including conjugative systems, a provirus, transposons and cell appendages. Some of these elements indicate recent exchange with the environment, whereas others seem to have been domesticated and might convey crucial metabolic traits.


September 22, 2019

The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology.

We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest,Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families revealT. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, andT. nisiRNAs are not 2´-O-methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. TheT. nigenome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo.© 2018, Fu et al.


September 22, 2019

Transposon-associated lincosamide resistance lnu(C) gene identified in Brachyspira hyodysenteriae ST83.

Treatment of Swine Dysentery (SD) caused by Brachyspira hyodysenteriae (B. hyodysenteriae) is carried out using antimicrobials such as macrolides, lincosamides and pleuromutilins leading to the selection of resistant strains. Whole genome sequencing of a multidrug-resistant B. hyodysenteriae strain called BH718 belonging to sequence type (ST) 83 revealed the presence of the lincosamide resistance gene lnu(C) on the small 1724-bp transposon MTnSag1. The strain also contains an A to T substitution at position 2058 (A2058T) in the 23S rRNA gene which is known to be associated with macrolide and lincosamide resistance in B. hyodysenteriae. Testing of additional strains showed that those containing lnu(C) exhibited a higher minimal inhibitory concentration (MIC) of lincomycin (MIC?=?64?mg/L) compared to strains lacking lnu(C), even if they also harbor the A2058T mutation. Resistance to pleuromutilins could not be explained by the presence of already reported mutations in the 23S rRNA gene and in the ribosomal protein L3. This study shows that B. hyodysenteriae has the ability to acquire mobile genetic elements conferring resistance to antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019

Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve.

Bifidobacterium breve represents one of the most abundant bifidobacterial species in the gastro-intestinal tract of breast-fed infants, where their presence is believed to exert beneficial effects. In the present study whole genome sequencing, employing the PacBio Single Molecule, Real-Time (SMRT) sequencing platform, combined with comparative genome analysis allowed the most extensive genetic investigation of this taxon. Our findings demonstrate that genes encoding Restriction/Modification (R/M) systems constitute a substantial part of the B. breve variable gene content (or variome). Using the methylome data generated by SMRT sequencing, combined with targeted Illumina bisulfite sequencing (BS-seq) and comparative genome analysis, we were able to detect methylation recognition motifs and assign these to identified B. breve R/M systems, where in several cases such assignments were confirmed by restriction analysis. Furthermore, we show that R/M systems typically impose a very significant barrier to genetic accessibility of B. breve strains, and that cloning of a methyltransferase-encoding gene may overcome such a barrier, thus allowing future functional investigations of members of this species.


September 22, 2019

The DNA methylome of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius.

DNA methylation is the most common epigenetic modification observed in the genomic DNA (gDNA) of prokaryotes and eukaryotes. Methylated nucleobases, N6-methyl-adenine (m6A), N4-methyl-cytosine (m4C), and 5-methyl-cytosine (m5C), detected on gDNA represent the discrimination mark between self and non-self DNA when they are part of restriction-modification systems in prokaryotes (Bacteria and Archaea). In addition, m5C in Eukaryotes and m6A in Bacteria play an important role in the regulation of key cellular processes. Although archaeal genomes present modified bases as in the two other domains of life, the significance of DNA methylations as regulatory mechanisms remains largely uncharacterized in Archaea. Here, we began by investigating the DNA methylome of Sulfolobus acidocaldarius. The strategy behind this initial study entailed the use of combined digestion assays, dot blots, and genome resequencing, which utilizes specific restriction enzymes, antibodies specifically raised against m6A and m5C and single-molecule real-time (SMRT) sequencing, respectively, to identify DNA methylations occurring in exponentially growing cells. The previously identified restriction-modification system, specific of S. acidocaldarius, was confirmed by digestion assay and SMRT sequencing while, the presence of m6A was revealed by dot blot and identified on the characteristic Dam motif by SMRT sequencing. No m5C was detected by dot blot under the conditions tested. Furthermore, by comparing the distribution of both detected methylations along the genome and, by analyzing DNA methylation profiles in synchronized cells, we investigated in which cellular pathways, in particular the cell cycle, this m6A methylation could be a key player. The analysis of sequencing data rejected a role for m6A methylation in another defense system and also raised new questions about a potential involvement of this modification in the regulation of other biological functions in S. acidocaldarius.


September 22, 2019

Culture-facilitated comparative genomics of the facultative symbiont Hamiltonella defensa.

Many insects host facultative, bacterial symbionts that confer conditional fitness benefits to their hosts. Hamiltonella defensa is a common facultative symbiont of aphids that provides protection against parasitoid wasps. Protection levels vary among strains of H. defensa that are also differentially infected by bacteriophages named APSEs. However, little is known about trait variation among strains because only one isolate has been fully sequenced. Generating complete genomes for facultative symbionts is hindered by relatively large genome sizes but low abundances in hosts like aphids that are very small. Here, we took advantage of methods for culturing H. defensa outside of aphids to generate complete genomes and transcriptome data for four strains of H. defensa from the pea aphid Acyrthosiphon pisum. Chosen strains also spanned the breadth of the H. defensa phylogeny and differed in strength of protection conferred against parasitoids. Results indicated that strains shared most genes with roles in nutrient acquisition, metabolism, and essential housekeeping functions. In contrast, the inventory of mobile genetic elements varied substantially, which generated strain specific differences in gene content and genome architecture. In some cases, specific traits correlated with differences in protection against parasitoids, but in others high variation between strains obscured identification of traits with likely roles in defense. Transcriptome data generated continuous distributions to genome assemblies with some genes that were highly expressed and others that were not. Single molecule real-time sequencing further identified differences in DNA methylation patterns and restriction modification systems that provide defense against phage infection.


September 22, 2019

Characterizing the DNA methyltransferases of Haloferax volcanii via bioinformatics, gene deletion, and SMRT Sequencing.

DNA methyltransferases (MTases), which catalyze the methylation of adenine and cytosine bases in DNA, can occur in bacteria and archaea alongside cognate restriction endonucleases (REases) in restriction-modification (RM) systems or independently as orphan MTases. Although DNA methylation and MTases have been well-characterized in bacteria, research into archaeal MTases has been limited. A previous study examined the genomic DNA methylation patterns (methylome) of the halophilic archaeonHaloferax volcanii, a model archaeal system which can be easily manipulated in laboratory settings, via single-molecule real-time (SMRT) sequencing and deletion of a putative MTase gene (HVO_A0006). In this follow-up study, we deleted other putative MTase genes inH. volcaniiand sequenced the methylomes of the resulting deletion mutants via SMRT sequencing to characterize the genes responsible for DNA methylation. The results indicate that deletion of putative RM genesHVO_0794,HVO_A0006, andHVO_A0237in a single strain abolished methylation of the sole cytosine motif in the genome (Cm4TAG). Amino acid alignments demonstrated thatHVO_0794shares homology with characterized cytosine CTAG MTases in other organisms, indicating that this MTase is responsible for Cm4TAG methylation inH. volcanii. The CTAG motif has high density at only one of the origins of replication, and there is no relative increase in CTAG motif frequency in the genome ofH. volcanii, indicating that CTAG methylation might not have effectively taken over the role of regulating DNA replication and mismatch repair in the organism as previously predicted. Deletion of the putative Type I RM operonrmeRMS(HVO_2269-2271) resulted in abolished methylation of the adenine motif in the genome (GCAm6BN6VTGC). Alignments of the MTase (HVO_2270) and site specificity subunit (HVO_2271) demonstrate homology with other characterized Type I MTases and site specificity subunits, indicating that thermeRMSoperon is responsible for adenine methylation inH. volcanii. Together with HVO_0794, these genes appear to be responsible for all detected methylation inH. volcanii, even though other putative MTases (HVO_C0040,HVO_A0079) share homology with characterized MTases in other organisms. We also report the construction of a multi-RM deletion mutant (?RM), with multiple RM genes deleted and with no methylation detected via SMRT sequencing, which we anticipate will be useful for future studies on DNA methylation inH. volcanii.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.