Menu
September 22, 2019

Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics.

Plant-beneficial phenazine-producing Pseudomonas spp. are proficient biocontrol agents of soil-dwelling plant pathogens. Phenazines are redox-active molecules that display broad-spectrum antibiotic activity toward many fungal, bacterial and oomycete plant pathogens. Phenazine compounds also play a role in the persistence and survival of Pseudomonas spp. in the rhizosphere. This mini-review focuses on plant-beneficial phenazine-producing Pseudomonas spp. from the P. fluorescens species complex, which includes numerous well-known phenazine-producing strains of biocontrol interest. In this review the current knowledge on phenazine biosynthesis and regulation, the role played by phenazines in biocontrol and rhizosphere colonization, as well as exciting new advances in the genomics of plant-beneficial phenazine-producing Pseudomonas spp. will be discussed.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019

Genome mining of Streptomyces xinghaiensis NRRL B-24674T for the discovery of the gene cluster involved in anticomplement activities and detection of novel xiamycin analogs.

Marine actinobacterium Streptomyces xinghaiensis NRRL B-24674T has been characterized as a novel species, but thus far, its biosynthetic potential remains unexplored. In this study, the high-quality genome sequence of S. xinghaiensis NRRL B-24674T was obtained, and the production of anticomplement agents, xiamycin analogs, and siderophores was investigated by genome mining. Anticomplement compounds are valuable for combating numerous diseases caused by the abnormal activation of the human complement system. The biosynthetic gene cluster (BGC) nrps1 resembles that of complestatins, which are potent microbial-derived anticomplement agents. The identification of the nrps1 BGC revealed a core peptide that differed from that in complestatin; thus, we studied the anticomplement activity of this strain. The culture broth of S. xinghaiensis NRRL B-24674T displayed good anticomplement activity. Subsequently, the disruption of the genes in the nrps1 BGC resulted in the loss of anticomplement activity, confirming the involvement of this BGC in the biosynthesis of anticomplement agents. In addition, the mining of the BGC tep5, which resembles that of the antiviral pentacyclic indolosesquiterpene xiamycin, resulted in the discovery of nine xiamycin analogs, including three novel compounds. In addition to the BGCs responsible for desferrioxamine B, neomycin, ectoine, and carotenoid, 18 BGCs present in the genome are predicted to be novel. The results of this study unveil the potential of S. xinghaiensis as a producer of novel anticomplement agents and provide a basis for further exploration of the biosynthetic potential of S. xinghaiensis NRRL B-24674T for the discovery of novel bioactive compounds by genome mining.


September 22, 2019

Alpha- and beta-mannan utilization by marine Bacteroidetes.

Marine microscopic algae carry out about half of the global carbon dioxide fixation into organic matter. They provide organic substrates for marine microbes such as members of the Bacteroidetes that degrade algal polysaccharides using carbohydrate-active enzymes (CAZymes). In Bacteroidetes genomes CAZyme encoding genes are mostly grouped in distinct regions termed polysaccharide utilization loci (PULs). While some studies have shown involvement of PULs in the degradation of algal polysaccharides, the specific substrates are for the most part still unknown. We investigated four marine Bacteroidetes isolated from the southern North Sea that harbour putative mannan-specific PULs. These PULs are similarly organized as PULs in human gut Bacteroides that digest a- and ß-mannans from yeasts and plants respectively. Using proteomics and defined growth experiments with polysaccharides as sole carbon sources we could show that the investigated marine Bacteroidetes express the predicted functional proteins required for a- and ß-mannan degradation. Our data suggest that algal mannans play an as yet unknown important role in the marine carbon cycle, and that biochemical principles established for gut or terrestrial microbes also apply to marine bacteria, even though their PULs are evolutionarily distant.© 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019

Genomic analysis of Picochlorum species reveals how microalgae may adapt to variable environments.

Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the Picochlorum clade. HGT is an ongoing and dynamic process in this algal clade with adaptation being driven by transfer, divergence, and loss. One HGT candidate that is differentially expressed under salinity stress is indolepyruvate decarboxylase that is involved in the production of a plant auxin that mediates bacteria-diatom symbiotic interactions. Large differences in levels of heterozygosity were found in diploid haplotypes among Picochlorum isolates. Biallelic divergence was pronounced in P. oklahomensis (salt plains environment) when compared with its closely related sister taxon Picochlorum SENEW3 (brackish water environment), suggesting a role of diverged alleles in response to environmental stress. Our results elucidate how microbial eukaryotes with limited gene inventories expand habitat range from mesophilic to halophilic through allelic diversity, and with minor but important contributions made by HGT. We also explore how the nature and quality of genome data may impact inference of nuclear ploidy.


September 22, 2019

Genomic discovery of the hypsin gene and biosynthetic pathways for terpenoids in Hypsizygus marmoreus.

Hypsizygus marmoreus (Beech mushroom) is a popular ingredient in Asian cuisine. The medicinal effects of its bioactive compounds such as hypsin and hypsiziprenol have been reported, but the genetic basis or biosynthesis of these components is unknown.In this study, we sequenced a reference strain of H. marmoreus (Haemi 51,987-8). We evaluated various assembly strategies, and as a result the Allpaths and PBJelly produced the best assembly. The resulting genome was 42.7 Mbp in length and annotated with 16,627 gene models. A putative gene (Hypma_04324) encoding the antifungal and antiproliferative hypsin protein with 75% sequence identity with the previously known N-terminal sequence was identified. Carbohydrate active enzyme analysis displayed the typical feature of white-rot fungi where auxiliary activity and carbohydrate-binding modules were enriched. The genome annotation revealed four terpene synthase genes responsible for terpenoid biosynthesis. From the gene tree analysis, we identified that terpene synthase genes can be classified into six clades. Four terpene synthase genes of H. marmoreus belonged to four different groups that implies they may be involved in the synthesis of different structures of terpenes. A terpene synthase gene cluster was well-conserved in Agaricomycetes genomes, which contained known biosynthesis and regulatory genes.Genome sequence analysis of this mushroom led to the discovery of the hypsin gene. Comparative genome analysis revealed the conserved gene cluster for terpenoid biosynthesis in the genome. These discoveries will further our understanding of the biosynthesis of medicinal bioactive molecules in this edible mushroom.


September 22, 2019

Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation.

Streptococcus pluranimalium is a new member of the Streptococcus genus isolated from multiple different animal hosts. It has been identified as a pathogen associated with subclinical mastitis, valvular endocarditis and septicaemia in animals. Moreover, this bacterium has emerged as a new pathogen for human infective endocarditis and brain abscess. However, the patho-biological properties of S. pluranimalium remain virtually unknown. The aim of this study was to determine the complete genome sequence of S. pluranimalium strain TH11417 isolated from a cattle with mastitis, and to characterize its antimicrobial resistance, virulence, and carbon catabolism.The genome of S. pluranimalium TH11417, determined by single-molecule real-time (SMRT) sequencing, consists of 2,065,522 base pair (bp) with a G?+?C content of 38.65%, 2,007 predicted coding sequence (CDS), 58 transfer RNA (tRNA) genes and five ribosome RNA (rRNA) operons. It contains a novel ISSpl1 element (a memeber of the IS3 family) and a ?11417.1 prophage that carries the mef(A), msr(D) and lnu(C) genes. Consistently, our antimicrobial susceptibility test confirmed that S. pluranimalium TH11417 was resistant to erythromycin and lincomycin. However, this strain did not show virulence in murine pneumonia (intranasal inoculation, 107 colony forming unit – CFU) and sepsis (intraperitoneal inoculation, 107 CFU) models. Additionally, this strain is able to grow with glucose, lactose or galactose as the sole carbon source, and possesses a lactose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS).We reported the first whole genome sequence of S. pluranimalium isolated from a cattle with mastitis. It harbors a prophage carrying the mef(A), msr(D) and lnu(C) genes, and is avirulent in the murine infection model.


September 22, 2019

Unraveling microbial communities associated with methylmercury production in paddy soils.

Rice consumption is now recognized as an important pathway of human exposure to the neurotoxin methylmercury (MeHg), particularly in countries where rice is a staple food. Although the discovery of a two-gene cluster hgcAB has linked Hg methylation to several phylogenetically diverse groups of anaerobic microorganisms converting inorganic mercury (Hg) to MeHg, the prevalence and diversity of Hg methylators in microbial communities of rice paddy soils remain unclear. We characterized the abundance and distribution of hgcAB genes using third-generation PacBio long-read sequencing and Illumina short-read metagenomic sequencing, in combination with quantitative PCR analyses in several mine-impacted paddy soils from southwest China. Both Illumina and PacBio sequencing analyses revealed that Hg methylating communities were dominated by iron-reducing bacteria (i.e., Geobacter) and methanogens, with a relatively low abundance of hgcA + sulfate-reducing bacteria in the soil. A positive correlation was observed between the MeHg content in soil and the relative abundance of Geobacter carrying the hgcA gene. Phylogenetic analysis also uncovered some hgcAB sequences closely related to three novel Hg methylators, Geobacter anodireducens, Desulfuromonas sp. DDH964, and Desulfovibrio sp. J2, among which G. anodireducens was validated for its ability to methylate Hg. These findings shed new light on microbial community composition and major clades likely driving Hg methylation in rice paddy soils.


September 22, 2019

The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans.

Sweet osmanthus (Osmanthus fragrans) is a very popular ornamental tree species throughout Southeast Asia and USA particularly for its extremely fragrant aroma. We constructed a chromosome-level reference genome of O. fragrans to assist in studies of the evolution, genetic diversity, and molecular mechanism of aroma development. A total of over 118?Gb of polished reads was produced from HiSeq (45.1?Gb) and PacBio Sequel (73.35?Gb), giving 100× depth coverage for long reads. The combination of Illumina-short reads, PacBio-long reads, and Hi-C data produced the final chromosome quality genome of O. fragrans with a genome size of 727?Mb and a heterozygosity of 1.45 %. The genome was annotated using de novo and homology comparison and further refined with transcriptome data. The genome of O. fragrans was predicted to have?45,542 genes, of which 95.68 % were functionally annotated. Genome annotation found 49.35 % as the repetitive sequences, with long terminal repeats (LTR) being the richest (28.94 %). Genome evolution analysis indicated the evidence of whole-genome duplication 15 million years ago, which contributed to the current content of 45,242 genes. Metabolic analysis revealed that linalool, a monoterpene is the main aroma compound. Based on the genome and transcriptome, we further demonstrated the direct connection between terpene synthases (TPSs) and the rich aromatic molecules in O. fragrans. We identified three new flower-specific TPS genes, of which the expression coincided with the production of linalool. Our results suggest that the high number of TPS genes and the flower tissue- and stage-specific TPS genes expressions might drive the strong unique aroma production of O. fragrans.


September 22, 2019

Genomic insights into virulence mechanisms of Leishmania donovani: evidence from an atypical strain.

Leishmaniasis is a neglected tropical disease with diverse clinical phenotypes, determined by parasite, host and vector interactions. Despite the advances in molecular biology and the availability of more Leishmania genome references in recent years, the association between parasite species and distinct clinical phenotypes remains poorly understood. We present a genomic comparison of an atypical variant of Leishmania donovani from a South Asian focus, where it mostly causes cutaneous form of leishmaniasis.Clinical isolates from six cutaneous leishmaniasis patients (CL-SL); 2 of whom were poor responders to antimony (CL-PR), and two visceral leishmaniasis patients (VL-SL) were sequenced on an Illumina MiSeq platform. Chromosome aneuploidy was observed in both groups but was more frequent in CL-SL. 248 genes differed by 2 fold or more in copy number among the two groups. Genes involved in amino acid use (LdBPK_271940) and energy metabolism (LdBPK_271950), predominated the VL-SL group with the same distribution pattern reflected in gene tandem arrays. Genes encoding amastins were present in higher copy numbers in VL-SL and CL-PR as well as being among predicted pseudogenes in CL-SL. Both chromosome and SNP profiles showed CL-SL and VL-SL to form two distinct groups. While expected heterozygosity was much higher in VL-SL, SNP allele frequency patterns did not suggest potential recent recombination breakpoints. The SNP/indel profile obtained using the more recently generated PacBio sequence did not vary markedly from that based on the standard LdBPK282A1 reference. Several genes previously associated with resistance to antimonials were observed in higher copy numbers in the analysis of CL-PR. H-locus amplification was seen in one cutaneous isolate which however did not belong to the CL-PR group.The data presented suggests that intra species variations at chromosome and gene level are more likely to influence differences in tropism as well as response to treatment, and contributes to greater understanding of parasite molecular mechanisms underpinning these differences. These findings should be substantiated with a larger sample number and expression/functional studies.


September 22, 2019

Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain.

Photorhabdus luminescens is an enteric bacterium, which lives in mutualistic association with soil nematodes and is highly pathogenic for a broad spectrum of insects. A complete genome sequence for the type strain P. luminescens subsp. laumondii TT01, which was originally isolated in Trinidad and Tobago, has been described earlier. Subsequently, a rifampicin resistant P. luminescens strain has been generated with superior possibilities for experimental characterization. This strain, which is widely used in research, was described as a spontaneous rifampicin resistant mutant of TT01 and is known as TT01-RifR.Unexpectedly, upon phenotypic comparison between the rifampicin resistant strain and its presumed parent TT01, major differences were found with respect to bioluminescence, pigmentation, biofilm formation, haemolysis as well as growth. Therefore, we renamed the strain TT01-RifR to DJC. To unravel the genomic basis of the observed differences, we generated a complete genome sequence for strain DJC using the PacBio long read technology. As strain DJC was supposed to be a spontaneous mutant, only few sequence differences were expected. In order to distinguish these from potential sequencing errors in the published TT01 genome, we re-sequenced a derivative of strain TT01 in parallel, also using the PacBio technology. The two TT01 genomes differed at only 30 positions. In contrast, the genome of strain DJC varied extensively from TT01, showing 13,000 point mutations, 330 frameshifts, and 220 strain-specific regions with a total length of more than 300 kb in each of the compared genomes.According to the major phenotypic and genotypic differences, the rifampicin resistant P. luminescens strain, now named strain DJC, has to be considered as an independent isolate rather than a derivative of strain TT01. Strains TT01 and DJC both belong to P. luminescens subsp. laumondii.


September 22, 2019

Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness.

Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased ß-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson’s Disease.


September 22, 2019

Genome sequence of the potato pathogenic fungus Alternaria solani HWC-168 reveals clues for its conidiation and virulence.

Alternaria solani is a known air-born deuteromycete fungus with a polycyclic life cycle and is the causal agent of early blight that causes significant yield losses of potato worldwide. However, the molecular mechanisms underlying the conidiation and pathogenicity remain largely unknown.We produced a high-quality genome assembly of A. solani HWC-168 that was isolated from a major potato-producing region of Northern China, which facilitated a comprehensive gene annotation, the accurate prediction of genes encoding secreted proteins and identification of conidiation-related genes. The assembled genome of A. solani HWC-168 has a genome size 32.8 Mb and encodes 10,358 predicted genes that are highly similar with related Alternaria species including Alternaria arborescens and Alternaria brassicicola. We identified conidiation-related genes in the genome of A. solani HWC-168 by searching for sporulation-related homologues identified from Aspergillus nidulans. A total of 975 secreted protein-encoding genes, which might act as virulence factors, were identified in the genome of A. solani HWC-168. The predicted secretome of A. solani HWC-168 possesses 261 carbohydrate-active enzymes (CAZy), 119 proteins containing RxLx[EDQ] motif and 27 secreted proteins unique to A. solani.Our findings will facilitate the identification of conidiation- and virulence-related genes in the genome of A. solani. This will permit new insights into understanding the molecular mechanisms underlying the A. solani-potato pathosystem and will add value to the global fungal genome database.


September 22, 2019

Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies.

Recent developments in third-gen long read sequencing and diploid-aware assemblers have resulted in the rapid release of numerous reference-quality assemblies for diploid genomes. However, assembly of highly heterozygous genomes is still problematic when regional heterogeneity is so high that haplotype homology is not recognised during assembly. This results in regional duplication rather than consolidation into allelic variants and can cause issues with downstream analysis, for example variant discovery, or haplotype reconstruction using the diploid assembly with unpaired allelic contigs.A new pipeline-Purge Haplotigs-was developed specifically for third-gen sequencing-based assemblies to automate the reassignment of allelic contigs, and to assist in the manual curation of genome assemblies. The pipeline uses a draft haplotype-fused assembly or a diploid assembly, read alignments, and repeat annotations to identify allelic variants in the primary assembly. The pipeline was tested on a simulated dataset and on four recent diploid (phased) de novo assemblies from third-generation long-read sequencing, and compared with a similar tool. After processing with Purge Haplotigs, haploid assemblies were less duplicated with minimal impact on genome completeness, and diploid assemblies had more pairings of allelic contigs.Purge Haplotigs improves the haploid and diploid representations of third-gen sequencing based genome assemblies by identifying and reassigning allelic contigs. The implementation is fast and scales well with large genomes, and it is less likely to over-purge repetitive or paralogous elements compared to alignment-only based methods. The software is available at https://bitbucket.org/mroachawri/purge_haplotigs under a permissive MIT licence.


September 22, 2019

An improved genome assembly for Larimichthys crocea reveals hepcidin gene expansion with diversified regulation and function.

Larimichthys crocea (large yellow croaker) is a type of perciform fish well known for its peculiar physiological properties and economic value. Here, we constructed an improved version of the L. crocea genome assembly, which contained 26,100 protein-coding genes. Twenty-four pseudo-chromosomes of L. crocea were also reconstructed, comprising 90% of the genome assembly. This improved assembly revealed several expansions in gene families associated with olfactory detection, detoxification, and innate immunity. Specifically, six hepcidin genes (LcHamps) were identified in L. crocea, possibly resulting from lineage-specific gene duplication. All LcHamps possessed similar genomic structures and functional domains, but varied substantially with respect to expression pattern, transcriptional regulation, and biological function. LcHamp1 was associated specifically with iron metabolism, while LcHamp2s were functionally diverse, involving in antibacterial activity, antiviral activity, and regulation of intracellular iron metabolism. This functional diversity among gene copies may have allowed L. crocea to adapt to diverse environmental conditions.


September 22, 2019

Complete genome sequencing of Lactobacillus plantarum ZLP001, a potential probiotic that enhances intestinal epithelial barrier function and defense against pathogens in pigs.

The mammalian gastrointestinal tract is a heterogeneous ecosystem with the most abundant, and one of the most diverse, microbial communities. The gut microbiota, which may contain more than 100 times the number of genes in the human genome, endows the host with beneficial functional features, including colonization resistance, nutrient metabolism, and immune tolerance (Bäckhed, 2005). Dysbiosis of gut microbiota may result in serious adverse consequences for the host, such as neurological disorders, cancer, obesity, malnutrition, inflammatory dysregulation, and susceptibility to pathogens


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.