Menu
July 7, 2019  |  

Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts.

Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73?kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25?kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid-host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts.© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from cats.

Carbapenem-resistant Enterobacteriaceae (CRE) are a pressing public health issue due to limited therapeutic options to treat such infections. CREs have been predominantly isolated from humans and environmental samples and they are rarely reported among companion animals. In this study we report on the isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from a companion animal. Carbapenemase-producing S. enterica Typhimurium carrying blaIMP-4 was identified from a systemically unwell (index) cat and three additional cats at an animal shelter. All isolates were identical and belonged to ST19. Genome sequencing revealed the acquisition of a multidrug-resistant IncHI2 plasmid (pIMP4-SEM1) that encoded resistance to nine antimicrobial classes including carbapenems and carried the blaIMP-4-qacG-aacA4-catB3 cassette array. The plasmid also encoded resistance to arsenic (MIC-150?mM). Comparative analysis revealed that the plasmid pIMP4-SEM1 showed greatest similarity to two blaIMP-8 carrying IncHI2 plasmids from Enterobacter spp. isolated from humans in China. This is the first report of CRE carrying a blaIMP-4 gene causing a clinical infection in a companion animal, with presumed nosocomial spread. This study illustrates the broader community risk entailed in escalating CRE transmission within a zoonotic species such as Salmonella, and in a cycle that encompasses humans, animals and the environment.


July 7, 2019  |  

Use of WGS data for investigation of a long-term NDM-1-producing Citrobacter freundii outbreak and secondary in vivo spread of blaNDM-1 to Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca.

An outbreak of NDM-1-producing Citrobacter freundii and possible secondary in vivo spread of blaNDM-1 to other Enterobacteriaceae were investigated.From October 2012 to March 2015, meropenem-resistant Enterobacteriaceae were detected in 45 samples from seven patients at Aalborg University Hospital, Aalborg, Denmark. In silico resistance genes, Inc plasmid types and STs (MLST) were obtained from WGS data from 24 meropenem-resistant isolates (13 C. freundii, 6 Klebsiella pneumoniae, 4 Escherichia coli and 1 Klebsiella oxytoca) and 1 meropenem-susceptible K. oxytoca. The sequences of the meropenem-resistant C. freundii isolates were compared by phylogenetic analyses. In vitro susceptibility to 21 antimicrobial agents was tested. Furthermore, in vitro conjugation and plasmid characterization was performed.From the seven patients, 13 highly clonal ST18 NDM-1-producing C. freundii were isolated. The ST18 NDM-1-producing C. freundii isolates were only susceptible to tetracycline, tigecycline, colistin and fosfomycin (except for the C. freundii isolates from Patient 2 and Patient 7, which were additionally resistant to tetracycline). The E. coli and K. pneumoniae from different patients belonged to different STs, indicating in vivo transfer of blaNDM-1 in the individual patients. This was further supported by in vitro conjugation and detection of a 154 kb IncA/C2 plasmid with blaNDM-1. Patient screenings failed to reveal any additional cases. None of the patients had a history of recent travel abroad and the source of the blaNDM-1 plasmid was unknown.To our knowledge, this is the first report of an NDM-1-producing C. freundii outbreak and secondary in vivo spread of an IncA/C2 plasmid with blaNDM-1 to other Enterobacteriaceae.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Genome and plasmid analysis of blaIMP-4 -carrying Citrobacter freundii B38.

Sequencing of the blaIMP-4 -carrying C. freundii B38 using PacBio SMRT technique revealed that the genome contained a chromosome of 5,134,500 bp, and three plasmids, pOZ172 (127,005 bp), pOZ181 (277,592 bp), and pOZ182 (18,467 bp). Plasmid pOZ172 was identified as IncFIIY, like pP10164-NDM and pNDM-EcGN174. It carries a class 1 integron with four cassettes: blaIMP-4-qacG2-aacA4-aphA15, and a complete hybrid tni module (tniR-tniQ-tniB-tniA). The recombination of tniR from Tn402 (identical) with tniQBA (99%) from Tn5053 occurred within the res site of Tn402/5053. The Tn402/5053-like integron, named Tn6017, was inserted into Tn1722 at the res II site. The replication, partitioning and transfer systems of pOZ181 were similar to IncHI2 (e.g. R478) and contained a sul1-type class 1 integron with the cassette array: orf-dfrA1-orf-gcu37-aadA5 linked to an upstream Tn1696 tnpA-tnpR and to a downstream 3′ CS and ISCR1 A Tn2 transposon with a blaTEM-1b ß-lactamase was identified on pOZ182. Other interesting resistance determinants on the B38 chromosome included MDR efflux pumps, AmpC ß-lactamase, and resistances to Cu, Ag, As, and Zn. This is the first report of a complete tni module linked to a blaIMP- 4 carrying class 1 integron, and together with other recently reported non-sul1 integrons, represents the emergence of a distinct evolutionary lineage of class 1 integrons lacking a 3′ -CS (qacE?1-sul1). The unique cassette array, complete tni module of Tn6017, and incompatibility group of pOZ172 suggests a different blaIMP-4 evolutionary pathway in C. freundii B38 compared to other blaIMP-4 foundin Gram-negative bacteria in the Western Pacific Region. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Tracking inter-institutional spread of NDM and identification of a novel NDM-positive plasmid, pSg1-NDM, using next-generation sequencing approaches.

Owing to gene transposition and plasmid conjugation, New Delhi metallo-ß-lactamase (NDM) is typically identified among varied Enterobacteriaceae species and STs. We used WGS to characterize the chromosomal and plasmid molecular epidemiology of NDM transmission involving four institutions in Singapore.Thirty-three Enterobacteriaceae isolates (collection years 2010-14) were sequenced using short-read sequencing-by-synthesis and analysed. Long-read single molecule, real-time sequencing (SMRTS) was used to characterize genetically a novel plasmid pSg1-NDM carried on Klebsiella pneumoniae ST147.In 20 (61%) isolates, blaNDM was located on the pNDM-ECS01 plasmid in the background of multiple bacterial STs, including eight K. pneumoniae STs and five Escherichia coli STs. In six (18%) isolates, a novel blaNDM-positive plasmid, pSg1-NDM, was found only in K. pneumoniae ST147. The pSg1-NDM-K. pneumoniae ST147 clone (Sg1-NDM) was fully sequenced using SMRTS. pSg1-NDM, a 90?103 bp IncR plasmid, carried genes responsible for resistance to six classes of antimicrobials. A large portion of pSg1-NDM had no significant homology to any known plasmids in GenBank. pSg1-NDM had no conjugative transfer region. Combined chromosomal-plasmid phylogenetic analysis revealed five clusters of clonal bacterial NDM-positive plasmid transmission, of which two were inter-institution clusters. The largest inter-institution cluster involved six K. pneumoniae ST147-pSg1-NDM isolates. Fifteen patients were involved in transmission clusters, of which four had ward contact, six had hospital contact and five had an unknown transmission link.A combined sequencing-by-synthesis and SMRTS approach can determine effectively the transmission clusters of blaNDM and genetically characterize novel plasmids. Plasmid molecular epidemiology is important to understanding NDM spread as blaNDM-positive plasmids can conjugate extensively across species and STs.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Complete sequencing of plasmids containing blaOXA-163 and blaOXA-48 in Escherichia coli ST131.

OXA-48-like enzymes have emerged as important extended-spectrum ß-lactamases/carbapenemases in E. coli ST131. We report the structure of the first fully sequenced blaOXA-163 plasmid, and of two other blaOXA-48 plasmids in this lineage. blaOXA-163 was located on a 71kb IncN plasmid with other resistance genes. blaOXA-48 was present on IncL/M plasmids, genetically similar to other blaOXA-48 plasmid sequences, and consistent with inter-species/inter-lineage spread. The presence of blaOXA-48-like genes on epidemic plasmids in ST131 is of concern. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Genomic recombination leading to decreased virulence of group B Streptococcus in a mouse model of adult invasive disease.

Adult invasive disease caused by Group B Streptococcus (GBS) is increasing worldwide. Whole-genome sequencing (WGS) now permits rapid identification of recombination events, a phenomenon that occurs frequently in GBS. Using WGS, we described that strain NGBS375, a capsular serotype V GBS isolate of sequence type (ST)297, has an ST1 genomic background but has acquired approximately 300 kbp of genetic material likely from an ST17 strain. Here, we examined the virulence of this strain in an in vivo model of GBS adult invasive infection. The mosaic ST297 strain showed intermediate virulence, causing significantly less systemic infection and reduced mortality than a more virulent, serotype V ST1 isolate. Bacteremia induced by the ST297 strain was similar to that induced by a serotype III ST17 strain, which was the least virulent under the conditions tested. Yet, under normalized bacteremia levels, the in vivo intrinsic capacity to induce the production of pro-inflammatory cytokines was similar between the ST297 strain and the virulent ST1 strain. Thus, the diminished virulence of the mosaic strain may be due to reduced capacity to disseminate or multiply in blood during a systemic infection which could be mediated by regulatory factors contained in the recombined region.


July 7, 2019  |  

IncHI2 plasmids are the key vectors responsible for oqxAB transmission among Salmonella species.

This study reported and analysed the complete sequences of two oqxAB-bearing IncHI2 plasmids harboured by a clinical S. Typhimurium strain and an S. Indiana strain of animal origin, respectively. Particularly, pA3T recovered from S. Indiana comprised the resistance determinants oqxAB, aac(6′)Ib-cr, fosA3 and blaCTX-M-14 Further genetic screening of 63 oqxAB-positive Salmonella spp. isolates revealed that the majority carried IncHI2 plasmids, confirming that such plasmids play a pivotal role in dissemination of oqxAB in Salmonella spp.. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Multiplication of blaOXA-23 is common in clinical Acinetobacter baumannii, but does not enhance carbapenem resistance.

To investigate the copy number of blaOXA-23 and its correlation with carbapenem resistance in carbapenem-resistant Acinetobacter baumannii (CRAB).A total of 113 blaOXA-23-positive clinical CRAB isolates were collected from two hospitals in Zhejiang province, China. Their genetic relatedness was determined by MLST. The MIC of imipenem was determined using the agar diffusion method and the copy number of blaOXA-23 was measured using quantitative real-time PCR (qRT-PCR). The complete genomes of five clinical CRAB strains were sequenced using PacBio technology to investigate the multiplication mechanism of blaOXA-23.Most of the isolates (100/113) belonged to global clone II and the MIC of imipenem ranged from 16 to 96 mg/L. The gene blaOXA-23 resided exclusively in Tn2006 or Tn2009. Approximately 38% of the isolates carried two or more copies of blaOXA-23. The copy number of blaOXA-23 was not correlated with the MIC of imipenem. Within the five sequenced strains, multiple copies of blaOXA-23 were either tandemly clustered or independently inserted at different genomic sites.Multiplication of blaOXA-23 is common in CRAB, but does not enhance carbapenem resistance. Multiplication can be present in the form of either tandem amplifications or independent insertions at different sites.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

A novel plasmid, pSx1, harboring a new Tn1696 derivative from extensively drug-resistant Shewanella xiamenensis encoding OXA-416.

The whole genome sequencing of extensively drug-resistant Shewanella xiamenensis T17 isolated from hospital effluents in Algeria revealed the presence of a novel 268.4?kb plasmid designated pSx1, which carries several antibiotic-resistance genes in the novel Tn1696 derivative (Tn6297), in addition to the chromosomal blaOXA-48-like gene (blaOXA-416). The presence of the plasmid was confirmed by nuclease S1-PFGE analysis and transformation by electroporation into Escherichia coli DH10B. Tn6297 contains an In27 class 1 integron harboring the dfrA12-orfF-aadA2 array, msr(E) and mph(E) associated with IS26; a new efflux pump multidrug resistance composite transposon delimited by two ISEc29s; Tn-tet harboring tetR and tetA(C); a class 1 integron with the qacG gene cassette; qnrVC6 and dfrA23 associated with ISCR1; and a complex class 1 integron In4-like containing aacC1, aadA1, blaVEB-16, catA2, sul1?, cmlA9, tetR, tetA(G), aac(6′)-II, and blaPSE-1. Its mer operon carries merB, but lacks merC, in contrast to Tn1696 and Tn21. This study represents the first characterization of a multidrug-resistant transposon and multidrug resistance plasmid in Shewanella and is the first report of blaOXA-416 in Algeria, providing evidence that Shewanella spp. could be an important reservoir and vehicle for drug resistance genes.


July 7, 2019  |  

Characterization and comparative overview of complete sequences of the first plasmids of Pandoraea across clinical and non-clinical strains.

To date, information on plasmid analysis in Pandoraea spp. is scarce. To address the gap of knowledge on this, the complete sequences of eight plasmids from Pandoraea spp. namely Pandoraea faecigallinarum DSM 23572(T) (pPF72-1, pPF72-2), Pandoraea oxalativorans DSM 23570(T) (pPO70-1, pPO70-2, pPO70-3, pPO70-4), Pandoraea vervacti NS15 (pPV15) and Pandoraea apista DSM 16535(T) (pPA35) were studied for the first time in this study. The information on plasmid sequences in Pandoraea spp. is useful as the sequences did not match any known plasmid sequence deposited in public databases. Replication genes were not identified in some plasmids, a situation that has led to the possibility of host interaction involvement. Some plasmids were also void of par genes and intriguingly, repA gene was also not discovered in these plasmids. This further leads to the hypothesis of host-plasmid interaction. Plasmid stabilization/stability protein-encoding genes were observed in some plasmids but were not established for participating in plasmid segregation. Toxin-antitoxin systems MazEF, VapBC, RelBE, YgiT-MqsR, HigBA, and ParDE were identified across the plasmids and their presence would improve plasmid maintenance. Conjugation genes were identified portraying the conjugation ability amongst Pandoraea plasmids. Additionally, we found a shared region amongst some of the plasmids that consists of conjugation genes. The identification of genes involved in replication, segregation, toxin-antitoxin systems and conjugation, would aid the design of drugs to prevent the survival or transmission of plasmids carrying pathogenic properties. Additionally, genes conferring virulence and antibiotic resistance were identified amongst the plasmids. The observed features in the plasmids shed light on the Pandoraea spp. as opportunistic pathogens.


July 7, 2019  |  

Whole genome analysis of Yersinia ruckeri isolated over 27 years in Australia and New Zealand reveals geographical endemism over multiple lineages and recent evolution under host selection.

Yersinia ruckeri is a salmonid pathogen with widespread distribution in cool-temperate waters including Australia and New Zealand, two isolated environments with recently developed salmonid farming industries. Phylogenetic comparison of 58 isolates from Australia, New Zealand, USA, Chile, Finland and China based on non-recombinant core genome SNPs revealed multiple deep-branching lineages, with a most recent common ancestor estimated at 18?500 years BP (12?355-24?757 95% HPD) and evidence of Australasian endemism. Evolution within the Tasmanian Atlantic salmon serotype O1b lineage has been slow, with 63 SNPs describing the variance over 27 years. Isolates from the prevailing lineage are poorly/non-motile compared to a lineage pre-vaccination, introduced in 1997, which is highly motile but has not been isolated since from epizootics. A non-motile phenotype has arisen independently in Tasmania compared to Europe and USA through a frameshift in fliI, encoding the ATPase of the flagella cluster. We report for the first time lipopolysaccharide O-antigen serotype O2 isolates in Tasmania. This phenotype results from deletion of the O-antigen cluster and consequent loss of high-molecular-weight O-antigen. This phenomenon has occurred independently on three occasions on three continents (Australasia, North America and Asia) as O2 isolates from the USA, China and Tasmania share the O-antigen deletion but occupy distant lineages. Despite the European and North American origins of the Australasian salmonid stocks, the lineages of Y. ruckeri in Australia and New Zealand are distinct from those of the northern hemisphere, suggesting they are pre-existing ancient strains that have emerged and evolved with the introduction of susceptible hosts following European colonization.


July 7, 2019  |  

Complete sequence of a F33:A-:B- conjugative plasmid carrying the oqxAB, fosA3, and blaCTX-M-55 elements from a foodborne Escherichia coli strain.

This study reports the complete sequence of pE80, a conjugative IncFII plasmid recovered from an Escherichia coli strain isolated from chicken meat. This plasmid harbors multiple resistance determinants including oqxAB, fosA3, blaCTX-M-55, and blaTEM-1, and is a close variant of the recently reported p42-2 element, which was recovered from E. coli of veterinary source. Recovery of pE80 constitutes evidence that evolution or genetic re-arrangement of IncFII type plasmids residing in animal-borne organisms is an active event, which involves acquisition and integration of foreign resistance elements into the plasmid backbone. Dissemination of these plasmids may further compromise the effectiveness of current antimicrobial strategies.


July 7, 2019  |  

Finished genome sequence of the highly multidrug-resistant human urine isolate Citrobacter freundii strain SL151.

Citrobacter freundii is a Gram-negative opportunistic pathogen that is increasingly being recognized as a causative agent of hospital-acquired urinary tract infections and an important reservoir of antimicrobial resistance determinants. In this report, we describe the finished genome sequence of C. freundii strain SL151, a highly multidrug-resistant human urine isolate. Copyright © 2016 Leski et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.