Menu
September 22, 2019  |  

Detection of mcr-1 plasmids in Enterobacteriaceae isolates from human specimens: Comparison with those in Escherichia coli isolates from livestock in Korea.

The emerging mobile colistin resistance gene, mcr-1, is an ongoing worldwide concern and an evaluation of clinical isolates harboring this gene is required in Korea. We investigated mcr-1-possessing Enterobacteriaceae among Enterobacteriaceae strains isolated in Korea, and compared the genetic details of the plasmids with those in Escherichia coli isolates from livestock.Among 9,396 Enterobacteriaceae clinical isolates collected between 2010 and 2015, 1,347 (14.3%) strains were resistant to colistin and those were screened for mcr-1 by PCR. Colistin minimum inhibitory concentrations (MICs) were determined by microdilution, and conjugal transfer of the mcr-1-harboring plasmids was assessed by direct mating. Whole genomes of three mcr-1-positive Enterobacteriaceae clinical isolates and 11 livestock-origin mcr-1-positive E. coli isolates were sequenced.Two E. coli and one Enterobacter aerogenes clinical isolates carried carried IncI2 plasmids harboring mcr-1, which conferred colistin resistance (E. coli MIC, 4 mg/L; E. aerogenes MIC, 32 mg/L). The strains possessed the complete conjugal machinery except for E. aerogenes harboring a truncated prepilin peptidase. The E. coli plasmid transferred more efficiently to E. coli than to Klebsiella pneumoniae or Enterobacter cloacae recipients. Among the three bacterial hosts, the colistin MIC was the highest for E. coli owing to the higher mcr-1-plasmid copy number and mcr-1 expression levels. Ten mcr-1-positive chicken-origin E. coli strains also possessed mcr-1-harboring IncI2 plasmids closely related to that in the clinical E. aerogenes isolate, and the remaining one porcine-origin E. coli possessed an mcr-1-harboring IncX4 plasmid.mcr-1-harboring IncI2 plasmids were identified in clinical Enterobacteriaceae isolates. These plasmids were closely associated with those in chicken-origin E. coli strains in Korea, supporting the concept of mcr-1 dissemination between humans and livestock.© The Korean Society for Laboratory Medicine.


September 22, 2019  |  

Plasmid and chromosomal integration of four novel blaIMP-carrying transposons from Pseudomonas aeruginosa, Klebsiella pneumoniae and an Enterobacter sp.

To provide detailed genetic characterization of four novel blaIMP-carrying transposons from Pseudomonas aeruginosa, Klebsiella pneumoniae and an Enterobacter sp.P. aeruginosa 60512, K. pneumoniae 447, P. aeruginosa 12939 and Enterobacter sp. A1137 were subjected to genome sequencing. The complete nucleotide sequences of two plasmids (p60512-IMP from the 60512 isolate and p447-IMP from the 447 isolate) and two chromosomes (the 12939 and A1137 isolates) were determined, then a genomic comparison of p60512-IMP, p447-IMP and four novel blaIMP-carrying transposons (Tn6394, Tn6375, Tn6411 and Tn6397) with related sequences was performed. Transferability of the blaIMP gene and bacterial antimicrobial susceptibility were tested.Tn6394 and Tn6375 were located in p60512-IMP and p447-IMP, respectively, while Tn6411 and Tn6397 were integrated into the 12939 and A1137 chromosomes, respectively. Tn6394 was an ISPa17-based transposition unit that harboured the integron In992 (carrying blaIMP-1). In73 (carrying blaIMP-8), In73 and In992, together with the ISEcp1:IS1R-blaCTX-M-14-IS903D unit, the macAB-tolC region and the truncated aacC2-tmrB region, respectively, were integrated into the prototype transposons Tn1722, Tn1696 and Tn7, respectively, generating the Tn3-family unit transposons, Tn6375 and Tn6378, and the Tn7-family unit transposon Tn6411, respectively. Tn6397 was a large integrative and conjugative element carrying Tn6378.Complex events of transposition and homologous recombination have occurred during the original formation and further plasmid and chromosomal integration of these four transposons, promoting accumulation and spread of antimicrobial resistance genes.


September 22, 2019  |  

Diversity of DHA-1-encoding plasmids in Klebsiella pneumoniae isolates from 16 French hospitals.

To provide new insights into the spread of plasmidic cephalosporinase DHA-1, 16 strains of Klebsiella pneumoniae and a strain of Klebsiella variicola producing DHA-1 were isolated between January 2012 and December 2013 in six regions of France and two French overseas departments and territories.Disc diffusion assays, isoelectric focusing and PCRs were used to characterize the plasmidic DHA-1 ß-lactamase. Plasmid analysis was performed by the method of Kado and Liu and WGS. Virulence of the strains was studied by biofilm formation and the survival of Drosophila.The strains were of low virulence and had one to three plasmids including one of various sizes (~40 to 319?kb) mediating DHA-1. Nine strains belonged to ST11 and possessed a pKPS30-type DHA-1 plasmid of the IncR (incompatibility) group. A strain of ST307 possessed pENVA, a DHA-1 plasmid of the IncH-type group. The seven remaining plasmids were unknown. Three belonged to the IncL/M group. They were closely related and their sequences were determined. One of the four remaining strains was chosen for further investigation. This strain of ST16 had two plasmids, a pUUH239.2-related plasmid and a new DHA-1 plasmid of ~319?kb of IncHI2 type.These findings demonstrate the major role of the pKPS30-type plasmid in the spread of DHA-1 cephalosporinase in France and provide evidence of two new emerging plasmids carrying this enzyme.


September 22, 2019  |  

Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China.

Florfenicol is a derivative of chloramphenicol that is used only for the treatment of animal diseases. A key resistance gene for florfenicol, floR, can spread among bacteria of the same and different species or genera through horizontal gene transfer. To analyze the potential transmission of resistance genes between animal and human pathogens, we investigated floR in Klebsiella pneumoniae isolates from patient samples. floR in human pathogens may originate from animal pathogens and would reflect the risk to human health of using antimicrobial agents in animals.PCR was used to identify floR-positive strains. The floR genes were cloned, and the minimum inhibitory concentrations (MICs) were determined to assess the relative resistance levels of the genes and strains. Sequencing and comparative genomics methods were used to analyze floR gene-related sequence structure as well as the molecular mechanism of resistance dissemination.Of the strains evaluated, 20.42% (67/328) were resistant to florfenicol, and 86.96% (20/23) of the floR-positive strains demonstrated high resistance to florfenicol with MICs =512 µg/mL. Conjugation experiments showed that transferrable plasmids carried the floR gene in three isolates. Sequencing analysis of a plasmid approximately 125 kb in size (pKP18-125) indicated that the floR gene was flanked by multiple copies of mobile genetic elements. Comparative genomics analysis of a 9-kb transposon-like fragment of pKP18-125 showed that an approximately 2-kb sequence encoding lysR-floR-virD2 was conserved in the majority (79.01%, 83/105) of floR sequences collected from NCBI nucleotide database. Interestingly, the most similar sequence was a 7-kb fragment of plasmid pEC012 from an Escherichia coli strain isolated from a chicken.Identified on a transferable plasmid in the human pathogen K. pneumoniae, the floR gene may be disseminated through horizontal gene transfer from animal pathogens. Studies on the molecular mechanism of resistance gene dissemination in different bacterial species of animal origin could provide useful information for preventing or controlling the spread of resistance between animal and human pathogens.


September 22, 2019  |  

Complete genome sequence of blaIMP-6-positive Metakosakonia sp. MRY16-398 isolate from the ascites of a diverticulitis patient.

A novel species of carbapenemase-producing Enterobacteriaceae (CPE) was isolated from a patient diagnosed with sigmoid colon diverticulitis. At first, laboratory testing suggested it was Klebsiella oxytoca or Pantoea sp.; however, a complete genome sequence of the isolate, MRY16-398, revealed that it could be novel species, most similar to [Kluyvera] intestini, of which taxonomic nomenclature is still under discussion. Orthologous conserved gene analysis among 42 related bacterial strains indicated that MRY16-398 was classified as the newly proposed genus Metakosakonia. Further, MRY16-398 was found to harbor the blaIMP-6 gene-positive class 1 integron (In722) in plasmid pMRY16-398_2 (IncN replicon, 47.4 kb in size). This finding implies that rare and opportunistic bacteria could be potential infectious agents. In conclusion, our results highlight the need for continuous monitoring for CPE even in nonpathogenic bacteria in the nosocomial environment.


September 22, 2019  |  

Enterobacter cloacae Complex Sequence Type 171 Isolates Expressing KPC-4 Carbapenemase Recovered from Canine Patients in Ohio.

Companion animals are likely relevant in the transmission of antimicrobial-resistant bacteria. Enterobacter xiangfangensis sequence type 171 (ST171), a clone that has been implicated in clusters of infections in humans, was isolated from two dogs with clinical disease in Ohio. The canine isolates contained IncHI2 plasmids encoding blaKPC-4 Whole-genome sequencing was used to put the canine isolates in phylogenetic context with available human ST171 sequences, as well as to characterize their blaKPC-4 plasmids. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

A large, refractory nosocomial outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control.

Carbapenem-resistant Enterobacteriaceae (CRE) represent a health threat, but effective control interventions remain unclear. Hospital wastewater sites are increasingly being highlighted as important potential reservoirs. We investigated a large Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli outbreak and wider CRE incidence trends in the Central Manchester University Hospital NHS Foundation Trust (CMFT) (United Kingdom) over 8 years, to determine the impact of infection prevention and control measures. Bacteriology and patient administration data (2009 to 2017) were linked, and a subset of CMFT or regional hospital KPC-producing E. coli isolates (n = 268) were sequenced. Control interventions followed international guidelines and included cohorting, rectal screening (n = 184,539 screens), environmental sampling, enhanced cleaning, and ward closure and plumbing replacement. Segmented regression of time trends for CRE detections was used to evaluate the impact of interventions on CRE incidence. Genomic analysis (n = 268 isolates) identified the spread of a KPC-producing E. coli outbreak clone (strain A, sequence type 216 [ST216]; n = 125) among patients and in the environment, particularly on 2 cardiac wards (wards 3 and 4), despite control measures. ST216 strain A had caused an antecedent outbreak and shared its KPC plasmids with other E. coli lineages and Enterobacteriaceae species. CRE acquisition incidence declined after closure of wards 3 and 4 and plumbing replacement, suggesting an environmental contribution. However, ward 3/ward 4 wastewater sites were rapidly recolonized with CRE and patient CRE acquisitions recurred, albeit at lower rates. Patient relocation and plumbing replacement were associated with control of a clonal KPC-producing E. coli outbreak; however, environmental contamination with CRE and patient CRE acquisitions recurred rapidly following this intervention. The large numbers of cases and the persistence of blaKPC in E. coli, including pathogenic lineages, are of concern. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Genomic characterization of carbapenemase-producing Klebsiella pneumoniae with chromosomally encoded blaNDM-1.

We report here Klebsiella pneumoniae strains carrying chromosomal blaNDM-1 in Thailand. The genomes of these two isolates include a 160-kbp insertion containing blaNDM-1, which is almost identical to that in the IncHI1B-like plasmid. Further analysis indicated that IS5-mediated intermolecular transposition and Tn3 transposase-mediated homologous recombination resulted in the integration of blaNDM-1 into the chromosome from an IncHI1B-like plasmid. The spread of this type of carbapenem-resistant Enterobacteriaceae may threaten public health and warrants further monitoring. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Transcriptional landscape of a blaKPC-2 plasmid and response to imipenem exposure in Escherichia coli TOP10.

The diffusion of KPC-2 carbapenemase is closely related to the spread of Klebsiella pneumoniae of the clonal-group 258 and linked to IncFIIK plasmids. Little is known about the biology of multi-drug resistant plasmids and the reasons of their successful dissemination. Using E. coli TOP10 strain harboring a multi-replicon IncFIIK-IncFIB blaKPC-2-gene carrying plasmid pBIC1a from K. pneumoniae ST-258 clinical isolate BIC-1, we aimed to identify basal gene expression and the effects of imipenem exposure using whole transcriptome approach by RNA sequencing (RNA-Seq). Independently of the antibiotic pressure, most of the plasmid-backbone genes were expressed at low levels. The most expressed pBIC1a genes were involved in antibiotic resistance (blaKPC-2, blaTEM and aph(3′)-I), in plasmid replication and conjugation, or associated to mobile elements. After antibiotic exposure, 34% of E. coli (pBIC1a) genome was differentially expressed. Induction of oxidative stress response was evidenced, with numerous upregulated genes of the SoxRS/OxyR oxydative stress regulons, the Fur regulon (for iron uptake machinery), and IscR regulon (for iron sulfur cluster synthesis). Nine genes carried by pBIC1a were up-regulated, including the murein DD-endopeptidase mepM and the copper resistance operon. Despite the presence of a carbapenemase, we observed a major impact on E. coli (pBIC1a) whole transcriptome after imipenem exposure, but no effect on the level of transcription of antimicrobial resistance genes. We describe adaptive responses of E. coli to imipenem-induced stress, and identified plasmid-encoded genes that could be involved in resistance to stressful environments.


September 22, 2019  |  

The plasmid-encoded transcription factor ArdK contributes to the repression of the IMP-6 metallo-ß-lactamase gene blaIMP-6, leading to a carbapenem-susceptible phenotype in the blaIMP-6-positive Escherichia coli strain A56-1S.

Carbapenemase-producing Enterobacteriaceae (CPE) are a global concern because these bacteria are resistant to almost all ß-lactams. Horizontal interspecies gene transfer via plasmid conjugation has increased the global dissemination of CPE. Recently, an Enterobacteriaceae strain positive for carbapenemase gene but showing a carbapenem-susceptible phenotype was identified, suggesting that these susceptible strains may be challenging to detect solely via antimicrobial susceptibility tests without molecular analysis. Here, we isolated a blaIMP-6 carbapenemase-gene positive but imipenem- and meropenem-susceptible Escherichia coli (ISMS-E) strain A56-1S (imipenem and meropenem minimum inhibitory concentration, = 0.125 mg/L), from a human urine specimen in Japan. A56-1S was carbapenemase negative by the Carba NP test, suggesting that IMP-6 production was low or undetectable. Thus, to characterize the mechanism of this phenotype, a meropenem-resistant E. coli A56-1R strain was obtained using meropenem-selection. A56-1R was positive for carbapenemase production by the Carba NP test, and blaIMP-6 transcription in A56-1R was 53-fold higher than in A56-1S, indicating that blaIMP-6 in A56-1S is negatively regulated at the transcriptional level. Comparative genomic analysis between the two strains revealed that the alleviation of restriction of DNA (ardK) gene encoding a putative transcription factor is disrupted by the IS26 insertion in A56-1R. A cotransformation assay of ardK and the regulatory element upstream of blaIMP-6 showed repression of blaIMP-6 transcription, indicating that ArdK negatively modulates blaIMP-6 transcription. ArdK binding and affinity assays demonstrated that ArdK directly binds to the regulatory element upstream of blaIMP-6 with dissociation constant values comparable to those of general transcription factors. The IMP-6 carbapenemase showed low hydrolytic activity against imipenem, resulting in an imipenem-susceptible and meropenem-resistant (ISMR) phenotype (previously reported as a stealth phenotype). However, the low expression of IMP-6 in the A56-1S strain could be a typical characteristic of ISMS-E due to gene repression, indicating that conventional antimicrobial susceptibility tests might be unable to detect such strains even when using both imipenem and meropenem. Bacteria that exhibit the ISMS phenotype could play a potential role as undetectable reservoirs and might facilitate gene transfer to other organisms while avoiding detection.


September 22, 2019  |  

Development of New Tools to Detect Colistin-Resistance among Enterobacteriaceae Strains.

The recent discovery of the plasmid-mediated mcr-1 gene conferring resistance to colistin is of clinical concern. The worldwide screening of this resistance mechanism among samples of different origins has highlighted the urgent need to improve the detection of colistin-resistant isolates in clinical microbiology laboratories. Currently, phenotypic methods used to detect colistin resistance are not necessarily suitable as the main characteristic of the mcr genes is the low level of resistance that they confer, close to the clinical breakpoint recommended jointly by the CLSI and EUCAST expert systems (S?=?2?mg/L and R?>?2?mg/L). In this context, susceptibility testing recommendations for polymyxins have evolved and are becoming difficult to implement in routine laboratory work. The large number of mechanisms and genes involved in colistin resistance limits the access to rapid detection by molecular biology. It is therefore necessary to implement well-defined protocols using specific tools to detect all colistin-resistant bacteria. This review aims to summarize the current clinical microbiology diagnosis techniques and their ability to detect all colistin resistance mechanisms and describe new tools specifically developed to assess plasmid-mediated colistin resistance. Phenotyping, susceptibility testing, and genotyping methods are presented, including an update on recent studies related to the development of specific techniques.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.