Menu
September 22, 2019  |  

Heterogeneous and flexible transmission of mcr-1 in hospital-associated Escherichia coli.

The recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route of mcr-1 among Enterobacteriaceae species in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis of Escherichia coli isolates collected in a hospital in Hangzhou, China. We found that mcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread of mcr-1 The mcr-1 gene was found on either chromosomes or plasmids, but in most of the E. coli isolates, mcr-1 was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission of mcr-1 and the coexistence of mcr-1 with other genes encoding ß-lactamases and fluoroquinolone resistance in the E. coli isolates. These findings indicate that mcr-1 is heterogeneously disseminated in both commensal and pathogenic strains of E. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology of mcr-1 among hospital-associated E. coli strains. IMPORTANCE Colistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergent mcr-1 colistin resistance gene threatens the clinical utility of colistin and has gained global attention. How mcr-1 spreads in hospital settings remains unknown and was investigated by whole-genome sequencing of mcr-1-carrying Escherichia coli in this study. The findings revealed extraordinary flexibility of mcr-1 in its spread among genetically diverse E. coli hosts and plasmids, nosocomial transmission of mcr-1-carrying E. coli, and the continuous emergence of novel Inc types of plasmids carrying mcr-1 and new mcr-1 variants. Additionally, mcr-1 was found to be frequently associated with other genes encoding ß-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology of mcr-1 and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat. Copyright © 2018 Shen et al.


September 22, 2019  |  

Comparative genomics of Escherichia coli sequence type 219 clones from the same patient: Evolution of the IncI1 blaCMY-carrying plasmid in vivo.

This study investigates the evolution of an Escherichia coli sequence type 219 clone in a patient with recurrent urinary tract infection, comparing isolate EC974 obtained prior to antibiotic treatment and isolate EC1515 recovered after exposure to several ß-lactam antibiotics (ceftriaxone, cefixime, and imipenem). EC974 had a smooth colony morphology, while EC1515 had a rough colony morphology on sheep blood agar. RAPD-PCR analysis suggested that both isolates belonged to the same clone. Antimicrobial susceptibility tests showed that EC1515 was more resistant to piperacillin/tazobactam, cefepime, cefpirome, and ertapenem than EC974. Comparative genomic analysis was used to investigate the genetic changes of EC974 and EC1515 within the host, and showed three plasmids with replicons IncI1, P0111, and IncFII in both isolates. P0111-type plasmids pEC974-2 and pEC1515-2, contained the antibiotic resistance genes aadA2, tetA, and drfA12. IncFII-type plasmids pEC974-3 and pEC1515-3 contained the antibiotic resistance genes blaTEM-1, aadA1, aadA22, sul3, and inuF. Interestingly, blaCMY-111 and blaCMY-4 were found in very similar IncI1 plasmids that also contained aadA22 and aac(3)-IId, from isolates EC974 (pEC974-1) and EC1515 (pEC1515-1), respectively. The results showed in vivo amino acid substitutions converting blaCMY-111 to blaCMY-4 (R221W and A238V substitutions). Conjugation experiments showed a high frequency of IncI1 and IncFII plasmid co-transference. Transconjugants and DH5a cells harboring blaCMY-4 or blaCMY-111 showed higher levels of resistance to ampicillin, amoxicillin, cefazolin, cefuroxime, cefotaxime, cefixime, and ceftazidime, but not piperacillin/tazobactam, cefpime, or ertapenem. All known genes (outer membrane proteins and extended-spectrum AmpC ß-lactamases) involved in ETP resistance in E. coli were identical between EC974 and EC1515. This is the first study to identify the evolution of an IncI1 plasmid within the host, and to characterize blaCMY-111 in E. coli.


September 22, 2019  |  

Integrating long-range connectivity information into de Bruijn graphs.

The de Bruijn graph is a simple and efficient data structure that is used in many areas of sequence analysis including genome assembly, read error correction and variant calling. The data structure has a single parameter k, is straightforward to implement and is tractable for large genomes with high sequencing depth. It also enables representation of multiple samples simultaneously to facilitate comparison. However, unlike the string graph, a de Bruijn graph does not retain long range information that is inherent in the read data. For this reason, applications that rely on de Bruijn graphs can produce sub-optimal results given their input data.We present a novel assembly graph data structure: the Linked de Bruijn Graph (LdBG). Constructed by adding annotations on top of a de Bruijn graph, it stores long range connectivity information through the graph. We show that with error-free data it is possible to losslessly store and recover sequence from a Linked de Bruijn graph. With assembly simulations we demonstrate that the LdBG data structure outperforms both our de Bruijn graph and the String Graph Assembler (SGA). Finally we apply the LdBG to Klebsiella pneumoniae short read data to make large (12 kbp) variant calls, which we validate using PacBio sequencing data, and to characterize the genomic context of drug-resistance genes.Linked de Bruijn Graphs and associated algorithms are implemented as part of McCortex, which is available under the MIT license at https://github.com/mcveanlab/mccortex.Supplementary data are available at Bioinformatics online.


September 22, 2019  |  

Sequencing of pT5282-CTXM, p13190-KPC and p30860-NR, and comparative genomics analysis of IncX8 plasmids.

This study proposes a replicon-based scheme for typing IncX plasmids into nine separately clustering subgroups, including IncX1a, IncX1ß and IncX2-8. The complete nucleotide sequences of three IncX8 plasmids, namely pT5282-CTXM and p30860-NR from Enterobacter cloacae and p13190-KPC from Klebsiella pneumoniae, were determined and were compared with two other previously sequenced IncX8 plasmids (pCAV1043-58 and pCAV1741-16). These five plasmids possessed conserved IncX8 backbones with limited genetic variation with respect to gene content and organisation, and each of them carried one or three accessory modules that harboured resistance markers and metabolic gene clusters as well as transposons, insertion sequence (IS)-based transposition units and miniature inverted repeat transposable elements (MITEs), indicating that the relatively small IncX8 backbones were able to integrate various foreign genetic contents. The resistance genes blaCTX-M-3 and blaTEM-1 (ß-lactam resistance), blaKPC-2 (carbapenem resistance) and ?blaTEM-1, and tet(A) (tetracycline resistance) and mph(E) (macrolide resistance) were found in pT5282-CTXM, p13190-KPC and pCAV1741-16, respectively, whilst p30860-NR and pCAV1043-58 carried no resistance genes. The data presented here provide an insight into the diversification and evolution history of IncX8 plasmids. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.


September 22, 2019  |  

Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan.

Carbapenemase-producing Klebsiella pneumoniae causes high mortality owing to the limited therapeutic options available. Here, we investigated an emergent carbapenem-resistant K. pneumoniae strain with hypervirulence found among KPC-2-producing strains in Taiwan.KPC-producing K. pneumoniae strains were collected consecutively from clinical specimens at the Taipei Veterans General Hospital between January 2012 and December 2014. Capsular types and the presence of rmpA/rmpA2 were analysed, and PFGE and MLST performed using these strains. The strain positive for rmpA/rmpA2 was tested in an in vivo mouse lethality study to verify its virulence and subjected to WGS to delineate its genomic features.A total of 62 KPC-2-producing K. pneumoniae strains were identified; all of these belonged to ST11 and capsular genotype K47. One strain isolated from a fatal case with intra-abdominal abscess (TVGHCRE225) harboured rmpA and rmpA2 genes. This strain was resistant to tigecycline and colistin, in addition to carbapenems, and did not belong to the major cluster in PFGE. TVGHCRE225 exhibited high in vivo virulence in the mouse lethality experiment. WGS showed that TVGHCRE225 acquired a novel hybrid virulence plasmid harbouring a set of virulence genes (iroBCDN, iucABCD, rmpA and rmpA2, and iutA) compared with the classic ST11 KPC-2-producing strain.We identified an XDR ST11 KPC-2-producing K. pneumoniae strain carrying a hybrid virulent plasmid in Taiwan. Active surveillance focusing on carbapenem-resistant hypervirulent K. pneumoniae strains is necessary, as the threat to human health is imminent.


September 22, 2019  |  

Characterization of a novel blaKLUC variant with reduced ß-lactam resistance from an IncA/C group plasmid in a clinical Klebsiella pneumoniae isolate.

Similar to other CTX-M family enzymes, KLUC is a recently identified and emerging determinant of cefotaxime resistance that has been recovered from at least three Enterobacteriaceae species, including Kluyvera cryocrescens, Escherichia coli, and Enterobacter cloacae. Whether this extended-spectrum ß-lactamase (ESBL) has been disseminated among commonly isolated Enterobacteriaceae is worthy of further investigation. In this study, we screened 739 nosocomial Enterobacteriaceae isolates (240 Klebsiella pneumoniae and 499 E. coli strains) and found that one K. pneumoniae and four E. coli isolates harbored the blaKLUC gene. Three blaKLUC determinants isolated from E. coli were entirely identical to a blaKLUC-3 gene previously recovered in the same hospital. PFGE of four blaKLUC-harboring E. coli strains showed that prevalence of these determinants was most likely mediated by horizontal gene transfer but not clonal dissemination. However, the variant isolated from K. pneumoniae belonged to a novel member of the KLUC enzyme group. This newly identified enzyme (KLUC-5) has an amino acid substitution compared with previously identified KLUC-1 (G18S) and KLUC-3 (G240D). Antimicrobial susceptibility tests showed that KLUC-5 significantly reduced resistance activity to almost all the selected antimicrobials compared to previously identified KLUC-3. Site-directed mutagenesis showed that blaKLUC-5-D240G and blaKLUC-5-S18G significantly enhanced the MIC against its best substrate. Conjugation and S1-PFGE indicated that blaKLUC-5 was located on a transferable plasmid, which was further decoded by single-molecule, real-time sequencing. Comparative genome analysis showed that its backbone exhibited genetic homology to the IncA/C incompatibility group plasmids. A transposable element, ISEcp1, was detected 256-bp upstream of the blaKLUC-5 gene; this location was inconsistent with the previously identified blaKLUC-1 but congruent with the variants recovered from E. coli in the same hospital. These data provide evidence of the increasingly emerging KLUC group of ESBLs in China.


September 22, 2019  |  

Co-location of the blaKPC-2, blaCTX-M-65, rmtB and virulence relevant factors in an IncFII plasmid from a hypermucoviscous Klebsiella pneumoniae isolate.

Hypervirulent variants of klebsiella pneumoniae (hvKP), which cause serious infections not only healthy individuals, but also the immunocompromised patients, have been increasingly reported recently. One conjugation of a hypermucoviscous strian SWU01 co-carried the resistance gene blaKPC-2 and virulence gene iroN by the PCR detection from three carbapenem-resistance hvKP. To know the genetic context of this plasmid. The whole genome of this strain was sequenced. We got a 162,552-bp plasmid (pSWU01) which co-carried the resistance gene blaKPC-2 and virulence gene iroN. It is composed of a typical IncFII-type backbone, five resistance genes including blaCTX-M-65, blaKPC-2, blaSHV-12, blaTEM-1 and rmtB, and several virulence relevant factors including iroN, traT and toxin-antitoxin systems. The plasmid pSWU01 co-carrying the multidrug resistance determinants and virulence relevant factors from the hypermucoviscous K. pneumoniae represents a novel therapeutic challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Detection and characterization of a clinical Escherichia coli ST3204 strain coproducing NDM-16 and MCR-1.

A plasmid-mediated colistin resistance gene, mcr-1, has been reported worldwide and has caused concern regarding a major therapeutic challenge. Alarmingly, mcr-1 has spread into clinical carbapenem-resistant Enterobacteriaceae isolates, resulting in extensively drug-resistant and even pan drug-resistant isolates that can cause untreatable infections. In this study, we report isolation of an extensively drug-resistant Escherichia coli strain EC1188 that coproduces NDM-16 and MCR-1 from a urine sample taken from a patient with craniocerebral injury.E. coli strain EC1188 was identified and subjected to genotyping, susceptibility testing and conjugation experiments. The genetic locations of blaNDM-16 and mcr-1 were established with southern blot hybridization. The complete genome sequence of this strain was obtained and the genetic characteristics of the mcr-1- and blaNDM-16-harboring plasmids were analyzed. In addition, comparative genetic analyses of mcr-1 and blaNDM-16 with closely related plasmids were also carried out.Whole-genome sequencing revealed that strain EC1188 possess various resistance genes and virulence genes. S1-pulsed-field gel electrophoresis and southern blot suggested that the blaNDM-16 and mcr-1 genes were located on an ~65 kb plasmid and an ~80 kb plasmid, respectively. Moreover, the two genes could successfully transfer their resistance phenotype to E. coli strain C600. Sequence analysis showed that these two plasmids possessed high sequence similarity to previously reported blaNDM-5-harboring and mcr-1-harboring plasmids in China.To the best of our knowledge, this is the first report to isolate an E. coli strain that coproduces NDM-16 and MCR-1. In addition, we characterized the blaNDM-16-harboring plasmid for the first time. Our study further emphasizes that the co-occurrence of the two prevalent transferrable resistance plasmids in a single isolate is highly significant because infections caused by MCR-1-producing carbapenem-resistant Enterobacteriaceae isolates are increasing each year. It is imperative to perform active surveillance to prevent further dissemination of MCR-1-producing CRE isolates.


September 22, 2019  |  

Genomics of Corynebacterium striatum, an emerging multidrug-resistant pathogen of immunocompromised patients.

Corynebacterium striatum is an emerging multidrug-resistant (MDR) pathogen of immunocompromised and chronically ill patients. The objective of these studies was to provide a detailed genomic analysis of disease-causing C. striatum and determine the genomic drivers of resistance and resistance-gene transmission.A multi-institutional and prospective pathogen genomics programme flagged seven MDR C. striatum infections occurring close in time, and specifically in immunocompromised patients with underlying respiratory diseases. Whole genome sequencing was used to identify clonal relationships among strains, genetic causes of antimicrobial resistance, and their mobilization capacity. Matrix-assisted linear desorption/ionization-time-of-flight analyses of sequenced isolates provided curated content to improve rapid clinical identification in subsequent cases.Epidemiological and genomic analyses identified a related cluster of three out of seven C. striatum among lung transplant patients who had common procedures and exposures at an outlying institution. Genomic analyses further elucidated drivers of the MDR phenotypes, including resistance genes mobilized by IS3504 and ISCg9a-like insertion sequences. Seven mobilizable resistance genes were localized to a common chromosomal region bounded by unpaired insertion sequences, suggesting that a single recombination event could spread resistance to aminoglycosides, macrolides, lincosamides and tetracyclines to naive strains.In-depth genomic studies of MDR C. striatum reveal its capacity for clonal spread within and across healthcare institutions and identify novel vectors that can mobilize multiple forms of drug resistance, further complicating efforts to treat infections in immunocompromised populations. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. All rights reserved.


September 22, 2019  |  

Complete genome sequence of a blaKPC-2-positive Klebsiella pneumoniae strain isolated from the effluent of an urban sewage treatment plant in Japan.

Antimicrobial resistance genes (ARGs) and the bacteria that harbor them are widely distributed in the environment, especially in surface water, sewage treatment plant effluent, soil, and animal waste. In this study, we isolated a KPC-2-producing Klebsiella pneumoniae strain (GSU10-3) from a sampling site in Tokyo Bay, Japan, near a wastewater treatment plant (WWTP) and determined its complete genome sequence. Strain GSU10-3 is resistant to most ß-lactam antibiotics and other antimicrobial agents (quinolones and aminoglycosides). This strain is classified as sequence type 11 (ST11), and a core genome phylogenetic analysis indicated that strain GSU10-3 is closely related to KPC-2-positive Chinese clinical isolates from 2011 to 2017 and is clearly distinct from strains isolated from the European Union (EU), United States, and other Asian countries. Strain GSU10-3 harbors four plasmids, including a blaKPC-2-positive plasmid, pGSU10-3-3 (66.2?kb), which is smaller than other blaKPC-2-positive plasmids and notably carries dual replicons (IncFII [pHN7A8] and IncN). Such downsizing and the presence of dual replicons may promote its maintenance and stable replication, contributing to its broad host range with low fitness costs. A second plasmid, pGSU10-3-1 (159.0?kb), an IncA/C2 replicon, carries a class 1 integron (containing intI1, dfrA12, aadA2, qacE?1, and sul1) with a high degree of similarity to a broad-host-range plasmid present in the family Enterobacteriaceae The plasmid pGSU10-3-2 (134.8?kb), an IncFII(K) replicon, carries the IS26-mediated ARGs [aac(6′)Ib-cr,blaOXA-1, catB4 (truncated), and aac(3)-IId], tet(A), and a copper/arsenate resistance locus. GSU10-3 is the first nonclinical KPC-2-producing environmental Enterobacteriaceae isolate from Japan for which the whole genome has been sequenced.IMPORTANCE We isolated and determined the complete genome sequence of a KPC-2-producing K. pneumoniae strain from a sampling site in Tokyo Bay, Japan, near a wastewater treatment plant (WWTP). In Japan, the KPC type has been very rarely detected, while IMP is the most predominant type of carbapenemase in clinical carbapenemase-producing Enterobacteriaceae (CPE) isolates. Although laboratory testing thus far suggested that Japan may be virtually free of KPC-producing Enterobacteriaceae, we have detected it from effluent from a WWTP. Antimicrobial resistance (AMR) monitoring of WWTP effluent may contribute to the early detection of future AMR bacterial dissemination in clinical settings and communities; indeed, it will help illuminate the whole picture in which environmental contamination through WWTP effluent plays a part. Copyright © 2018 Sekizuka et al.


September 22, 2019  |  

Identification of the KPC plasmid pCT-KPC334: New insights on the evolutionary pathway of epidemic plasmids harboring fosA3-blaKPC-2 genes.

A novel, non-conjugative plasmid pKP1034 isolated from a fosfomycin-resistant, carbapenemase-producing Klebsiella pneumonia strain KP1034 was recently reported to carry fosA3, blaKPC-2, blaCTX-M-65, blaSHV-12 and rmtB genes, and was hypothesized to evolve from several recombination events of two closely related plasmids, pHN7A8 and pKPC-LK30 [1]. In this study, a plasmid pCT-KPC334 carrying fosA3, blaKPC-2, blaCTX-M-65, blaSHV-12, blaTEM-1, and rmtB genes was identified, providing evidence on the evolutionary pathway of plasmids harboring fosA3-blaKPC-2 genes.


September 22, 2019  |  

4.5 years within-patient evolution of a colistin resistant KPC-producing Klebsiella pneumoniae ST258.

Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp) has emerged globally over the last decade as a major nosocomial pathogen that threatens patient care. These highly resistant bacteria are mostly associated with a single Kp clonal group, CG258, but the reasons for its host and hospital adaptation remain largely unknown.We analyzed the in vivo evolution of a colistin-resistant KPC-Kp CG258 strain that contaminated a patient following an endoscopy and was responsible for a fatal bacteremia 4.5 years later. Whole-genome sequencing was performed on 17 KPC-Kp isolates from this patient; single-nucleotide polymorphisms were analyzed and their implication in antimicrobial resistance and bacterial host adaptation investigated.The patient KPC-Kp strain diversified over 4.5 years at a rate of 7.5 substitutions per genome per year, resulting in broad phenotypic modifications. After 2 years of carriage, all isolates restored susceptibility to colistin. Higher expression of the fimbriae conferred the ability to produce more biofilm, and the isolate responsible for a bacteremia grew in human serum. The convergent mutations occurring in specific pathways, such as the respiratory chain and the cell envelope, revealed a complex long-term adaptation of KPC-Kp.Broad genomic and phenotypic diversification and the parallel selection of pathoadaptive mutations might contribute to long-term carriage and virulence of KPC-Kp CG258 strains and to the dissemination of this clone.


September 22, 2019  |  

Lactobacillus rhamnosus LRB mediated inhibition of oral streptococci.

Lactobacillus rhamnosus is a lactic acid bacterium with a diverse ecological habitat. We recently isolated a L. rhamnosus strain (LRB) from a healthy baby-tooth that had naturally fallen out. We determined the whole genome sequence of LRB and found that the isolate is closely genetically related to an intestinal isolate, L. rhamnosus GG (ATCC 53103). However, the LRB genome had lost about a 75-kb segment and undergone a genomic rearrangement. We assessed LRB’s capacity to survive in the gut environment, at least temporarily. We found that LRB, like the intestinal isolate ATCC 53103, showed resistance to low pH but sensitive to bile salt. Surprisingly, we found that this oral isolate LRB showed strong antimicrobial activity against a variety of oral streptococci including Streptococcus mutans. The production of antimicrobial activity is dependent on media composition since some media supported the production while others did not. The production of antimicrobial activity is also dependent on growth temperature, with optimal production at 37°C. The antimicrobial activity was not restricted to streptococci, but effective against a variety of organisms, including ESKAPE pathogens.© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


September 22, 2019  |  

Complete genomic analysis of a kingdom crossing Klebsiella variicola isolate.

Bacterial isolate X39 was isolated from a community-acquired pneumonia patient in Beijing, China. A phylogenetic tree based on rpoB genes and average nucleotide identity data confirmed that isolate X39 belonged to Klebsiella variicola. The genome of K. variicola X39 contained one circular chromosome and nine plasmids. Comparative genomic analyses with other K. variicola isolates revealed that K. variicola X39 contained the most unique genes. Of these unique genes, many were prophages and transposases. Many virulence factors were shared between K. variicola X39 and Klebsiella pneumoniae F1. The pathogenicity of K. variicola X39 was compared with that of K. pneumoniae F1 in an abdominal infection model. The results indicated that K. variicola X39 was less virulent than typical clinical K. pneumoniae F1. The genome of K. variicola X39 also contained some genes involved in plant colonization, nitrogen fixation, and defense against oxidative stress. GFP-labeled K. variicola X39 could colonize maize as an endophytic bacterium. We concluded that K. variicola X39 was a kingdom-crossing strain.


September 22, 2019  |  

Comparative analysis of blaKPC-2- and rmtB-carrying IncFII-family pKPC-LK30/pHN7A8 hybrid plasmids from Klebsiella pneumoniae CG258 strains disseminated among multiple Chinese hospitals.

We recently reported the complete sequence of a blaKPC-2- and rmtB-carrying IncFII-family plasmid p675920-1 with the pKPC-LK30/pHN7A8 hybrid structure. Comparative genomics of additional sequenced plasmids with similar hybrid structures and their prevalence in blaKPC-carrying Klebsiella pneumoniae strains from China were investigated in this follow-up study.A total of 51 blaKPC-carrying K. pneumoniae strains were isolated from 2012 to 2016 from five Chinese hospitals and genotyped by multilocus sequence typing. The blaKPC-carrying plasmids from four representative strains were sequenced and compared with p675920-1 and pCT-KPC. Plasmid transfer, carbapenemase activity determination, and bacterial antimicrobial susceptibility test were performed to characterize resistance phenotypes mediated by these plasmids. The prevalence of pCT-KPC-like plasmids in these blaKPC-carrying K. pneumoniae strains was screened by PCR.The six KPC-encoding plasmids p1068-KPC, p20049-KPC, p12139-KPC and p64917-KPC (sequenced in this study) and p675920-1 and pCT-KPC slightly differed from one another due to deletion and acquisition of various backbone and accessory regions. Two major accessory resistance regions, which included the blaKPC-2 region harboring blaKPC-2 (carbapenem resistance) and blaSHV-12 (ß-lactam resistance), and the MDR region carrying rmtB (aminoglycoside resistance), fosA3 (fosfomycin resistance), blaTEM-1B (ß-lactam resistance) and blaCTX-M-65 (ß-lactam resistance), were found in each of these six plasmids and exhibited several parallel evolution routes. The pCT-KPC-like plasmids were present in all the 51 K. pneumoniae isolates, all of which belonged to CG258.There was clonal dissemination of K. pneumoniae CG258 strains, harboring blaKPC-2- and rmtB-carrying IncFII-family pKPC-LK30/pHN7A8 hybrid plasmids, among multiple Chinese hospitals.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.