Menu
September 22, 2019  |  

Transposon-associated lincosamide resistance lnu(C) gene identified in Brachyspira hyodysenteriae ST83.

Treatment of Swine Dysentery (SD) caused by Brachyspira hyodysenteriae (B. hyodysenteriae) is carried out using antimicrobials such as macrolides, lincosamides and pleuromutilins leading to the selection of resistant strains. Whole genome sequencing of a multidrug-resistant B. hyodysenteriae strain called BH718 belonging to sequence type (ST) 83 revealed the presence of the lincosamide resistance gene lnu(C) on the small 1724-bp transposon MTnSag1. The strain also contains an A to T substitution at position 2058 (A2058T) in the 23S rRNA gene which is known to be associated with macrolide and lincosamide resistance in B. hyodysenteriae. Testing of additional strains showed that those containing lnu(C) exhibited a higher minimal inhibitory concentration (MIC) of lincomycin (MIC?=?64?mg/L) compared to strains lacking lnu(C), even if they also harbor the A2058T mutation. Resistance to pleuromutilins could not be explained by the presence of already reported mutations in the 23S rRNA gene and in the ribosomal protein L3. This study shows that B. hyodysenteriae has the ability to acquire mobile genetic elements conferring resistance to antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019  |  

LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons.

Long terminal repeat retrotransposons (LTR-RTs) are prevalent in plant genomes. The identification of LTR-RTs is critical for achieving high-quality gene annotation. Based on the well-conserved structure, multiple programs were developed for the de novo identification of LTR-RTs; however, these programs are associated with low specificity and high false discovery rates. Here, we report LTR_retriever, a multithreading-empowered Perl program that identifies LTR-RTs and generates high-quality LTR libraries from genomic sequences. LTR_retriever demonstrated significant improvements by achieving high levels of sensitivity (91%), specificity (97%), accuracy (96%), and precision (90%) in rice (Oryza sativa). LTR_retriever is also compatible with long sequencing reads. With 40k self-corrected PacBio reads equivalent to 4.5× genome coverage in Arabidopsis (Arabidopsis thaliana), the constructed LTR library showed excellent sensitivity and specificity. In addition to canonical LTR-RTs with 5′-TG…CA-3′ termini, LTR_retriever also identifies noncanonical LTR-RTs (non-TGCA), which have been largely ignored in genome-wide studies. We identified seven types of noncanonical LTRs from 42 out of 50 plant genomes. The majority of noncanonical LTRs areCopiaelements, with which the LTR is four times shorter than that of otherCopiaelements, which may be a result of their target specificity. Strikingly, non-TGCACopiaelements are often located in genic regions and preferentially insert nearby or within genes, indicating their impact on the evolution of genes and their potential as mutagenesis tools.© 2018 American Society of Plant Biologists. All Rights Reserved.


September 22, 2019  |  

Dissemination of KPC-2-encoding IncX6 plasmids among multiple Enterobacteriaceae species in a single Chinese hospital.

Forty-five KPC-producing Enterobacteriaceae strains were isolated from multiple departments in a Chinese public hospital from 2014 to 2015. Genome sequencing of four representative strains, namely Proteus mirabilis GN2, Serratia marcescens GN26, Morganella morganii GN28, and Klebsiella aerogenes E20, indicated the presence of blaKPC-2-carrying IncX6 plasmids pGN2-KPC, pGN26-KPC, pGN28-KPC, and pE20-KPC in the four strains, respectively. These plasmids were genetically closely related to one another and to the only previously sequenced IncX6 plasmid, pKPC3_SZ. Each of the plasmids carried a single accessory module containing the blaKPC-2/3-carrying ?Tn6296 derivatives. The ?Tn6292 element from pGN26-KPC also contained qnrS, which was absent from all other plasmids. Overall, pKPC3_SZ-like blaKPC-carrying IncX6 plasmids were detected by PCR in 44.4% of the KPC-producing isolates, which included K. aerogenes, P. mirabilis, S. marcescens, M. morganii, Escherichia coli, and Klebsiella pneumoniae, and were obtained from six different departments of the hospital. Data presented herein provided insights into the genomic diversity and evolution of IncX6 plasmids, as well as the dissemination and epidemiology of blaKPC-carrying IncX6 plasmids among Enterobacteriaceae in a hospital setting.


September 22, 2019  |  

Molecular characterization of IMP-1-producing Enterobacter cloacae complex isolates in Tokyo.

Although KPC enzymes are most common among carbapenemases produced by Enterobacter cloacae complex globally, the epidemiology varies from one country to another. While previous studies have suggested that IMP enzymes are most common in Japan, detailed analysis has been scarce thus far. Here, we carried out a molecular epidemiological study and plasmid analysis of IMP-1-producing E. cloacae complex isolates collected from three hospitals in central Tokyo using whole-genome sequencing. Seventy-one isolates were classified into several sequence types (STs), and 49 isolates were identified as Enterobacter hormaechei ST78. Isolates of ST78 were divided into three clades by core-genome single nucleotide polymorphism (SNP)-based phylogenetic analysis. Whereas isolates of clade 3 were isolated from only one hospital, isolates of clade 1 and 2 were identified from multiple hospitals. Ten of 12 clade 1 isolates and 1 of 4 clade 2 isolates carried blaIMP-1 on IncHI2 plasmids, with high similarity of genetic structures. In addition, these plasmids shared backbone structures with IncHI2 plasmids carrying blaIMP reported from other countries of the Asia-Pacific region. All isolates of clade 3 except one carried blaIMP-1 in In1426 on IncW plasmids. An isolate of clade 3, which lacked IncW plasmids, carried blaIMP-1 in In1426 on an IncFIB plasmid. These observations suggest that IMP-producing E. cloacae complex isolates with a diversity of host genomic backgrounds have spread in central Tokyo, and they indicate the possible contribution of IncHI2 plasmids toward this phenomenon. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

The global distribution and spread of the mobilized colistin resistance gene mcr-1.

Colistin represents one of the few available drugs for treating infections caused by carbapenem-resistant Enterobacteriaceae. As such, the recent plasmid-mediated spread of the colistin resistance gene mcr-1 poses a significant public health threat, requiring global monitoring and surveillance. Here, we characterize the global distribution of mcr-1 using a data set of 457 mcr-1-positive sequenced isolates. We find mcr-1 in various plasmid types but identify an immediate background common to all mcr-1 sequences. Our analyses establish that all mcr-1 elements in circulation descend from the same initial mobilization of mcr-1 by an ISApl1 transposon in the mid 2000s (2002-2008; 95% highest posterior density), followed by a marked demographic expansion, which led to its current global distribution. Our results provide the first systematic phylogenetic analysis of the origin and spread of mcr-1, and emphasize the importance of understanding the movement of antibiotic resistance genes across multiple levels of genomic organization.


September 22, 2019  |  

Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome.

When unifying genomic resources among studies and comparing data between species, there is often no better resource than a genome sequence. Having a reference genome for the Chinook salmon (Oncorhynchus tshawytscha) will enable the extensive genomic resources available for Pacific salmon, Atlantic salmon, and rainbow trout to be leveraged when asking questions related to the Chinook salmon. The Chinook salmon’s wide distribution, long cultural impact, evolutionary history, substantial hatchery production, and recent wild-population decline make it an important research species. In this study, we sequenced and assembled the genome of a Chilliwack River Hatchery female Chinook salmon (gynogenetic and homozygous at all loci). With a reference genome sequence, new questions can be asked about the nature of this species, and its role in a rapidly changing world.


September 22, 2019  |  

Complete genomic analysis of a Salmonella enterica Serovar Typhimurium isolate cultured from ready-to-eat pork in China carrying one large plasmid containing mcr-1.

One mcr-1-carrying ST34-type Salmonella Typhimurium WW012 was cultured from 3,200 ready-to-eat (RTE) pork samples in 2014 in China. Broth dilution method was applied to obtain the antimicrobial susceptibility of Salmonella Typhimurium WW012. Broth matting assays were carried out to detect transferability of this phenotype and whole-genome sequencing was performed to analyze its genomic characteristic. Thirty out of 3,200 RTE samples were positive for Salmonella and the three most frequent serotypes were identified as S. Derby (n = 8), S. Typhimurium (n = 6), and S. Enteritidis (n = 6). One S. Typhimurium isolate (S. Typhimurium WW012) cultured from RTE prepared pork was found to contain the mcr-1 gene. S. Typhimurium WW012 expressed a level of high resistance to seven different antimicrobial compounds in addition to colistin (MIC = 8 mg/L). A single plasmid, pWW012 (151,609-bp) was identified and found to be of an IncHI2/HI2A type that encoded a mcr-1 gene along with six additional antimicrobial resistance genes. Plasmid pWW012 contained an IS30-mcr-1-orf-orf-IS30 composite transposon that can be successfully transferred to Escherichia coli J53. When assessed further, the latter demonstrated considerable similarity to three plasmids pHYEC7-mcr-1, pSCC4, and pHNSHP45-2, respectively. Furthermore, plasmid pWW012 also contained a multidrug resistance (MDR) genetic structure IS26-aadA2-cmlA2-aadA1-IS406-sul3-IS26-dfrA12-aadA2-IS26, which showed high similarity to two plasmids, pHNLDF400 and pHNSHP45-2, respectively. Moreover, genes mapping to the chromosome (4,991,167-bp) were found to carry 28 mutations, related to two component regulatory systems (pmrAB, phoPQ) leading to modifications of lipid A component of the lipopolysaccharide structure. Additionally, one mutation (D87N) in the quinolone resistance determining region (QRDR) gene of gyrA was identified in this mcr-1 harboring S. Typhimurium. In addition, various virulence factors and heavy metal resistance-encoding genes were also identified on the genome of S. Typhimurium WW012. This is the first report of the complete nucleotide sequence of mcr-1-carrying MDR S. Typhimurium strain from RTE pork in China.


September 22, 2019  |  

In vitro DNA SCRaMbLE.

The power of synthetic biology has enabled the expression of heterologous pathways in cells, as well as genome-scale synthesis projects. The complexity of biological networks makes rational de novo design a grand challenge. Introducing features that confer genetic flexibility is a powerful strategy for downstream engineering. Here we develop an in vitro method of DNA library construction based on structural variation to accomplish this goal. The “in vitro SCRaMbLE system” uses Cre recombinase mixed in a test tube with purified DNA encoding multiple loxPsym sites. Using a ß-carotene pathway designed for expression in yeast as an example, we demonstrate top-down and bottom-up in vitro SCRaMbLE, enabling optimization of biosynthetic pathway flux via the rearrangement of relevant transcription units. We show that our system provides a straightforward way to correlate phenotype and genotype and is potentially amenable to biochemical optimization in ways that the in vivo system cannot achieve.


September 22, 2019  |  

The FBT1 large serine recombinase catalyzes DNA integration at pseudo-attB sites in the genus Nocardia.

Plasmid vectors based on bacteriophage integrases are important tools in molecular microbiology for the introduction of foreign DNA, especially into bacterial species where other systems for genetic manipulation are limited. Site specific integrases catalyze recombination between phage and bacterial attachment sites (attP and attB, respectively) and the best studied integrases in the actinomycetes are the serine integrases from the Streptomyces bacteriophages FC31 and FBT1. As this reaction is unidirectional and highly stable, vectors containing phage integrase systems have been used in a number of genetic engineering applications. Plasmids bearing the FBT1 integrase have been used to introduce DNA into Streptomyces and Amycolatopsis strains; however, they have not been widely studied in other actinobacterial genera. Here, we show that vectors based on FBT1 integrase can stably integrate into the chromosomes of a range of Nocardia species, and that this integration occurs despite the absence of canonical attB sites in these genomes. Furthermore, we show that a FBT1 integrase-based vector can insert at multiple pseudo-attB sites within a single strain and we determine the sequence of a pseudo-attB motif. These data suggest that FBT1 integrase-based vectors can be used to readily and semi-randomly introduce foreign DNA into the genomes of a range of Nocardia species. However, the precise site of insertion will likely require empirical determination in each species to avoid unexpected off-target effects.


September 22, 2019  |  

Inpactor, integrated and parallel analyzer and classifier of LTR retrotransposons and its application for pineapple LTR retrotransposons diversity and dynamics.

One particular class of Transposable Elements (TEs), called Long Terminal Repeats (LTRs), retrotransposons, comprises the most abundant mobile elements in plant genomes. Their copy number can vary from several hundreds to up to a few million copies per genome, deeply affecting genome organization and function. The detailed classification of LTR retrotransposons is an essential step to precisely understand their effect at the genome level, but remains challenging in large-sized genomes, requiring the use of optimized bioinformatics tools that can take advantage of supercomputers. Here, we propose a new tool: Inpactor, a parallel and scalable pipeline designed to classify LTR retrotransposons, to identify autonomous and non-autonomous elements, to perform RT-based phylogenetic trees and to analyze their insertion times using High Performance Computing (HPC) techniques. Inpactor was tested on the classification and annotation of LTR retrotransposons in pineapple, a recently-sequenced genome. The pineapple genome assembly comprises 44% of transposable elements, of which 23% were classified as LTR retrotransposons. Exceptionally, 16.4% of the pineapple genome assembly corresponded to only one lineage of the Gypsy superfamily: Del, suggesting that this particular lineage has undergone a significant increase in its copy numbers. As demonstrated for the pineapple genome, Inpactor provides comprehensive data of LTR retrotransposons’ classification and dynamics, allowing a fine understanding of their contribution to genome structure and evolution. Inpactor is available at https://github.com/simonorozcoarias/Inpactor.


September 22, 2019  |  

A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea.

Transposable elements (TEs) are mobile DNA sequences known as drivers of genome evolution. Their impacts have been widely studied in animals, plants and insects, but little is known about them in microalgae. In a previous study, we compared the genetic polymorphisms between strains of the haptophyte microalga Tisochrysis lutea and suggested the involvement of active autonomous TEs in their genome evolution.To identify potentially autonomous TEs, we designed a pipeline named PiRATE (Pipeline to Retrieve and Annotate Transposable Elements, download: https://doi.org/10.17882/51795 ), and conducted an accurate TE annotation on a new genome assembly of T. lutea. PiRATE is composed of detection, classification and annotation steps. Its detection step combines multiple, existing analysis packages representing all major approaches for TE detection and its classification step was optimized for microalgal genomes. The efficiency of the detection and classification steps was evaluated with data on the model species Arabidopsis thaliana. PiRATE detected 81% of the TE families of A. thaliana and correctly classified 75% of them. We applied PiRATE to T. lutea genomic data and established that its genome contains 15.89% Class I and 4.95% Class II TEs. In these, 3.79 and 17.05% correspond to potentially autonomous and non-autonomous TEs, respectively. Annotation data was combined with transcriptomic and proteomic data to identify potentially active autonomous TEs. We identified 17 expressed TE families and, among these, a TIR/Mariner and a TIR/hAT family were able to synthesize their transposase. Both these TE families were among the three highest expressed genes in a previous transcriptomic study and are composed of highly similar copies throughout the genome of T. lutea. This sum of evidence reveals that both these TE families could be capable of transposing or triggering the transposition of potential related MITE elements.This manuscript provides an example of a de novo transposable element annotation of a non-model organism characterized by a fragmented genome assembly and belonging to a poorly studied phylum at genomic level. Integration of multi-omics data enabled the discovery of potential mobile TEs and opens the way for new discoveries on the role of these repeated elements in genomic evolution of microalgae.


September 22, 2019  |  

The complete chloroplast genome sequence of Actinidia arguta using the PacBio RS II platform.

Actinidia arguta is the most basal species in a phylogenetically and economically important genus in the family Actinidiaceae. To better understand the molecular basis of the Actinidia arguta chloroplast (cp), we sequenced the complete cp genome from A. arguta using Illumina and PacBio RS II sequencing technologies. The cp genome from A. arguta was 157,611 bp in length and composed of a pair of 24,232 bp inverted repeats (IRs) separated by a 20,463 bp small single copy region (SSC) and an 88,684 bp large single copy region (LSC). Overall, the cp genome contained 113 unique genes. The cp genomes from A. arguta and three other Actinidia species from GenBank were subjected to a comparative analysis. Indel mutation events and high frequencies of base substitution were identified, and the accD and ycf2 genes showed a high degree of variation within Actinidia. Forty-seven simple sequence repeats (SSRs) and 155 repetitive structures were identified, further demonstrating the rapid evolution in Actinidia. The cp genome analysis and the identification of variable loci provide vital information for understanding the evolution and function of the chloroplast and for characterizing Actinidia population genetics.


September 22, 2019  |  

Unexpected invasion of miniature inverted-repeat transposable elements in viral genomes

Transposable elements (TEs) are common and often present with high copy numbers in cellular genomes. Unlike in cellular organisms, TEs were previously thought to be either rare or absent in viruses. Almost all reported TEs display only one or two copies per viral genome. In addition, the discovery of pandoraviruses with genomes up to 2.5-Mb emphasizes the need for biologists to rethink the fundamental nature of the relationship between viruses and cellular life.


September 22, 2019  |  

Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire.

Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences. We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome). The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis. This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.© 2018 The Authors New Phytologist © 2018 New Phytologist Trust.


September 22, 2019  |  

Biosynthesis of abscisic acid in fungi: identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea.

While abscisic acid (ABA) is known as a hormone produced by plants through the carotenoid pathway, a small number of phytopathogenic fungi are also able to produce this sesquiterpene but they use a distinct pathway that starts with the cyclization of farnesyl diphosphate (FPP) into 2Z,4E-a-ionylideneethane which is then subjected to several oxidation steps. To identify the sesquiterpene cyclase (STC) responsible for the biosynthesis of ABA in fungi, we conducted a genomic approach in Botrytis cinerea. The genome of the ABA-overproducing strain ATCC58025 was fully sequenced and five STC-coding genes were identified. Among them, Bcstc5 exhibits an expression profile concomitant with ABA production. Gene inactivation, complementation and chemical analysis demonstrated that BcStc5/BcAba5 is the key enzyme responsible for the key step of ABA biosynthesis in fungi. Unlike what is observed for most of the fungal secondary metabolism genes, the key enzyme-coding gene Bcstc5/Bcaba5 is not clustered with the other biosynthetic genes, i.e., Bcaba1 to Bcaba4 that are responsible for the oxidative transformation of 2Z,4E-a-ionylideneethane. Finally, our study revealed that the presence of the Bcaba genes among Botrytis species is rare and that the majority of them do not possess the ability to produce ABA.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.