October 23, 2019  |  

CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1 expression via thousands of large, programmed genomic deletions.

The extent to which non-coding mutations contribute to Mendelian disease is a major unknown in human genetics. Relatedly, the vast majority of candidate regulatory elements have yet to be functionally validated. Here, we describe a CRISPR-based system that uses pairs of guide RNAs (gRNAs) to program thousands of kilobase-scale deletions that deeply scan across a targeted region in a tiling fashion (“ScanDel”). We applied ScanDel to HPRT1, the housekeeping gene underlying Lesch-Nyhan syndrome, an X-linked recessive disorder. Altogether, we programmed 4,342 overlapping 1 and 2 kb deletions that tiled 206 kb centered on HPRT1 (including 87 kb upstream and 79 kb downstream) with median 27-fold redundancy per base. We functionally assayed programmed deletions in parallel by selecting for loss of HPRT function with 6-thioguanine. As expected, sequencing gRNA pairs before and after selection confirmed that all HPRT1 exons are needed. However, HPRT1 function was robust to deletion of any intergenic or deeply intronic non-coding region, indicating that proximal regulatory sequences are sufficient for HPRT1 expression. Although our screen did identify the disruption of exon-proximal non-coding sequences (e.g., the promoter) as functionally consequential, long-read sequencing revealed that this signal was driven by rare, imprecise deletions that extended into exons. Our results suggest that no singular distal regulatory element is required for HPRT1 expression and that distal mutations are unlikely to contribute substantially to Lesch-Nyhan syndrome burden. Further application of ScanDel could shed light on the role of regulatory mutations in disease at other loci while also facilitating a deeper understanding of endogenous gene regulation. Copyright © 2017 American Society of Human Genetics. All rights reserved.


October 23, 2019  |  

An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage.

Although engineered nucleases can efficiently cleave intracellular DNA at desired target sites, major concerns remain on potential ‘off-target’ cleavage that may occur throughout the genome. We developed an online tool: predicted report of genome-wide nuclease off-target sites (PROGNOS) that effectively identifies off-target sites. The initial bioinformatics algorithms in PROGNOS were validated by predicting 44 of 65 previously confirmed off-target sites, and by uncovering a new off-target site for the extensively studied zinc finger nucleases (ZFNs) targeting C-C chemokine receptor type 5. Using PROGNOS, we rapidly interrogated 128 potential off-target sites for newly designed transcription activator-like effector nucleases containing either Asn-Asn (NN) or Asn-Lys (NK) repeat variable di-residues (RVDs) and 3- and 4-finger ZFNs, and validated 13 bona fide off-target sites for these nucleases by DNA sequencing. The PROGNOS algorithms were further refined by incorporating additional features of nuclease-DNA interactions and the newly confirmed off-target sites into the training set, which increased the percentage of bona fide off-target sites found within the top PROGNOS rankings. By identifying potential off-target sites in silico, PROGNOS allows the selection of more specific target sites and aids the identification of bona fide off-target sites, significantly facilitating the design of engineered nucleases for genome editing applications.


September 22, 2019  |  

Exploring the genome and transcriptome of the cave nectar bat Eonycteris spelaea with PacBio long-read sequencing.

In the past two decades, bats have emerged as an important model system to study host-pathogen interactions. More recently, it has been shown that bats may also serve as a new and excellent model to study aging, inflammation, and cancer, among other important biological processes. The cave nectar bat or lesser dawn bat (Eonycteris spelaea) is known to be a reservoir for several viruses and intracellular bacteria. It is widely distributed throughout the tropics and subtropics from India to Southeast Asia and pollinates several plant species, including the culturally and economically important durian in the region. Here, we report the whole-genome and transcriptome sequencing, followed by subsequent de novo assembly, of the E. spelaea genome solely using the Pacific Biosciences (PacBio) long-read sequencing platform.The newly assembled E. spelaea genome is 1.97 Gb in length and consists of 4,470 sequences with a contig N50 of 8.0 Mb. Identified repeat elements covered 34.65% of the genome, and 20,640 unique protein-coding genes with 39,526 transcripts were annotated.We demonstrated that the PacBio long-read sequencing platform alone is sufficient to generate a comprehensive de novo assembled genome and transcriptome of an important bat species. These results will provide useful insights and act as a resource to expand our understanding of bat evolution, ecology, physiology, immunology, viral infection, and transmission dynamics.


September 22, 2019  |  

ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory- and field-selected pink bollworm.

Evolution of pest resistance threatens the benefits of genetically engineered crops that produce Bacillus thuringiensis (Bt) insecticidal proteins. Strategies intended to delay pest resistance are most effective when implemented proactively. Accordingly, researchers have selected for and analyzed resistance to Bt toxins in many laboratory strains of pests before resistance evolves in the field, but the utility of this approach depends on the largely untested assumption that laboratory- and field-selected resistance to Bt toxins are similar. Here we compared the genetic basis of resistance to Bt toxin Cry2Ab, which is widely deployed in transgenic crops, between laboratory- and field-selected populations of the pink bollworm (Pectinophora gossypiella), a global pest of cotton. We discovered that resistance to Cry2Ab is associated with mutations disrupting the same ATP-binding cassette transporter gene (PgABCA2) in a laboratory-selected strain from Arizona, USA, and in field-selected populations from India. The most common mutation, loss of exon 6 caused by alternative splicing, occurred in resistant larvae from both locations. Together with previous data, the results imply that mutations in the same gene confer Bt resistance in laboratory- and field-selected strains and suggest that focusing on ABCA2 genes may help to accelerate progress in monitoring and managing resistance to Cry2Ab.


September 22, 2019  |  

Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering

BACKGROUND: High-throughput bacterial 16S rRNA gene sequencing followed by clustering of short sequences into operational taxonomic units (OTUs) is widely used for microbiome profiling. However, clustering of short 16S rRNA gene reads into biologically meaningful OTUs is challenging, in part because nucleotide variation along the 16S rRNA gene is only partially captured by short reads. The recent emergence of long-read platforms, such as single-molecule real-time (SMRT) sequencing from Pacific Biosciences, offers the potential for improved taxonomic and phylogenetic profiling. Here, we evaluate the performance of long- and short-read 16S rRNA gene sequencing using simulated and experimental data, followed by OTU inference using computational pipelines based on heuristic and complete-linkage hierarchical clustering. RESULTS: In simulated data, long-read sequencing was shown to improve OTU quality and decrease variance. We then profiled 40 human gut microbiome samples using a combination of Illumina MiSeq and Blautia-specific SMRT sequencing, further supporting the notion that long reads can identify additional OTUs. We implemented a complete-linkage hierarchical clustering strategy using a flexible computational pipeline, tailored specifically for PacBio circular consensus sequencing (CCS) data that outperforms heuristic methods in most settings: https://github.com/oscar-franzen/oclust/. CONCLUSION: Our data demonstrate that long reads can improve OTU inference; however, the choice of clustering algorithm and associated clustering thresholds has significant impact on performance.


September 22, 2019  |  

Dynamic transcriptome profiling dataset of vaccinia virus obtained from long-read sequencing techniques.

Poxviruses are large DNA viruses that infect humans and animals. Vaccinia virus (VACV) has been applied as a live vaccine for immunization against smallpox, which was eradicated by 1980 as a result of worldwide vaccination. VACV is the prototype of poxviruses in the investigation of the molecular pathogenesis of the virus. Short-read sequencing methods have revolutionized transcriptomics; however, they are not efficient in distinguishing between the RNA isoforms and transcript overlaps. Long-read sequencing (LRS) is much better suited to solve these problems and also allow direct RNA sequencing. Despite the scientific relevance of VACV, no LRS data have been generated for the viral transcriptome to date.For the deep characterization of the VACV RNA profile, various LRS platforms and library preparation approaches were applied. The raw reads were mapped to the VACV reference genome and also to the host (Chlorocebus sabaeus) genome. In this study, we applied the Pacific Biosciences RSII and Sequel platforms, which altogether resulted in 937,531 mapped reads of inserts (1.42 Gb), while we obtained 2,160,348 aligned reads (1.75 Gb) from the different library preparation methods using the MinION device from Oxford Nanopore Technologies.By applying cutting-edge technologies, we were able to generate a large dataset that can serve as a valuable resource for the investigation of the dynamic VACV transcriptome, the virus-host interactions, and RNA base modifications. These data can provide useful information for novel gene annotations in the VACV genome. Our dataset can also be used to analyze the currently available LRS platforms, library preparation methods, and bioinformatics pipelines.


September 22, 2019  |  

Characterization of four C1q/TNF-related proteins (CTRPs) from red-lip mullet (Liza haematocheila) and their transcriptional modulation in response to bacterial and pathogen-associated molecular pattern stimuli.

The structural and evolutionary linkage between tumor necrosis factor (TNF) and the globular C1q (gC1q) domain defines the C1q and TNF-related proteins (CTRPs), which are involved in diverse functions such as immune defense, inflammation, apoptosis, autoimmunity, and cell differentiation. In this study, red-lip mullet (Liza haematocheila) CTRP4-like (MuCTRP4-like), CTRP5 (MuCTRP5), CTRP6 (MuCTRP6), and CTRP7 (MuCTRP7) were identified from the red-lip mullet transcriptome database and molecularly characterized. According to in silico analysis, coding sequences of MuCTRP4-like, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of 1128, 753, 729, and 888 bp open reading frames (ORF), respectively and encoded 375, 250, 242, and 295 amino acids, respectively. All CTRPs possessed a putative C1q domain. Additionally, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of a collagen region. Phylogenetic analysis exemplified that MuCTRPs were distinctly clustered with the respective CTRP orthologs. Tissue-specific expression analysis demonstrated that MuCTRP4-like was mostly expressed in the blood and intestine. Moreover, MuCTRP6 was highly expressed in the blood, whereas MuCTRP5 and MuCTRP7 were predominantly expressed in the muscle and stomach, respectively. According to the temporal expression in blood, all MuCTRPs exhibited significant modulations in response to polyinosinic:polycytidylic acid (poly I:C) and Lactococcus garvieae (L. garvieae). MuCTRP4-like, MuCTRP5, and MuCTRP6 showed significant upregulation in response to lipopolysaccharides (LPS). The results of this study suggest the potential involvement of Mullet CTRPs in post-immune responses. Copyright © 2018. Published by Elsevier Ltd.


September 22, 2019  |  

Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.

Parallel sequencing of a single cell’s genome and transcriptome provides a powerful tool for dissecting genetic variation and its relationship with gene expression. Here we present a detailed protocol for G&T-seq, a method for separation and parallel sequencing of genomic DNA and full-length polyA(+) mRNA from single cells. We provide step-by-step instructions for the isolation and lysis of single cells; the physical separation of polyA(+) mRNA from genomic DNA using a modified oligo-dT bead capture and the respective whole-transcriptome and whole-genome amplifications; and library preparation and sequence analyses of these amplification products. The method allows the detection of thousands of transcripts in parallel with the genetic variants captured by the DNA-seq data from the same single cell. G&T-seq differs from other currently available methods for parallel DNA and RNA sequencing from single cells, as it involves physical separation of the DNA and RNA and does not require bespoke microfluidics platforms. The process can be implemented manually or through automation. When performed manually, paired genome and transcriptome sequencing libraries from eight single cells can be produced in ~3 d by researchers experienced in molecular laboratory work. For users with experience in the programming and operation of liquid-handling robots, paired DNA and RNA libraries from 96 single cells can be produced in the same time frame. Sequence analysis and integration of single-cell G&T-seq DNA and RNA data requires a high level of bioinformatics expertise and familiarity with a wide range of informatics tools.


September 22, 2019  |  

wtf genes are prolific dual poison-antidote meiotic drivers.

Meiotic drivers are selfish genes that bias their transmission into gametes, defying Mendelian inheritance. Despite the significant impact of these genomic parasites on evolution and infertility, few meiotic drive loci have been identified or mechanistically characterized. Here, we demonstrate a complex landscape of meiotic drive genes on chromosome 3 of the fission yeasts Schizosaccharomyces kambucha and S. pombe. We identify S. kambucha wtf4 as one of these genes that acts to kill gametes (known as spores in yeast) that do not inherit the gene from heterozygotes. wtf4 utilizes dual, overlapping transcripts to encode both a gamete-killing poison and an antidote to the poison. To enact drive, all gametes are poisoned, whereas only those that inherit wtf4 are rescued by the antidote. Our work suggests that the wtf multigene family proliferated due to meiotic drive and highlights the power of selfish genes to shape genomes, even while imposing tremendous costs to fertility.


September 22, 2019  |  

Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification.

Currently, bacterial 16S rRNA gene analyses are based on sequencing of individual variable regions of the 16S rRNA gene (Kozich, et al Appl Environ Microbiol 79:5112-5120, 2013).This short read approach can introduce biases. Thus, full-length bacterial 16S rRNA gene sequencing is needed to reduced biases. A new alternative for full-length bacterial 16S rRNA gene sequencing is offered by PacBio single molecule, real-time (SMRT) technology. The aim of our study was to validate PacBio P6 sequencing chemistry using three approaches: 1) sequencing the full-length bacterial 16S rRNA gene from a single bacterial species Staphylococcus aureus to analyze error modes and to optimize the bioinformatics pipeline; 2) sequencing the full-length bacterial 16S rRNA gene from a pool of 50 different bacterial colonies from human stool samples to compare with full-length bacterial 16S rRNA capillary sequence; and 3) sequencing the full-length bacterial 16S rRNA genes from 11 vaginal microbiome samples and compare with in silico selected bacterial 16S rRNA V1V2 gene region and with bacterial 16S rRNA V1V2 gene regions sequenced using the Illumina MiSeq.Our optimized bioinformatics pipeline for PacBio sequence analysis was able to achieve an error rate of 0.007% on the Staphylococcus aureus full-length 16S rRNA gene. Capillary sequencing of the full-length bacterial 16S rRNA gene from the pool of 50 colonies from stool identified 40 bacterial species of which up to 80% could be identified by PacBio full-length bacterial 16S rRNA gene sequencing. Analysis of the human vaginal microbiome using the bacterial 16S rRNA V1V2 gene region on MiSeq generated 129 operational taxonomic units (OTUs) from which 70 species could be identified. For the PacBio, 36,000 sequences from over 58,000 raw reads could be assigned to a barcode, and the in silico selected bacterial 16S rRNA V1V2 gene region generated 154 OTUs grouped into 63 species, of which 62% were shared with the MiSeq dataset. The PacBio full-length bacterial 16S rRNA gene datasets generated 261 OTUs, which were grouped into 52 species, of which 54% were shared with the MiSeq dataset. Alpha diversity index reported a higher diversity in the MiSeq dataset.The PacBio sequencing error rate is now in the same range of the previously widely used Roche 454 sequencing platform and current MiSeq platform. Species-level microbiome analysis revealed some inconsistencies between the full-length bacterial 16S rRNA gene capillary sequencing and PacBio sequencing.


September 22, 2019  |  

G&T-seq: parallel sequencing of single-cell genomes and transcriptomes.

The simultaneous sequencing of a single cell’s genome and transcriptome offers a powerful means to dissect genetic variation and its effect on gene expression. Here we describe G&T-seq, a method for separating and sequencing genomic DNA and full-length mRNA from single cells. By applying G&T-seq to over 220 single cells from mice and humans, we discovered cellular properties that could not be inferred from DNA or RNA sequencing alone.


September 22, 2019  |  

Scale-up of sediment microbial fuel cells.

Sediment microbial fuel cells (SMFCs) are used as renewable power sources to operate remote sensors. However, increasing the electrode surface area results in decreased power density, which demonstrates that SMFCs do not scale up with size. As an alternative to the physical scale-up of SMFCs, we proposed that it is possible to scale up power by using smaller-sized individually operated SMFCs connected to a power management system that electrically isolates the anodes and cathodes. To demonstrate our electronic scale-up approach, we operated one 0.36-m2 SMFC (called a single-equivalent SMFC) and four independent SMFCs of 0.09 m2 each (called scaled-up SMFCs) and managed the power using an innovative custom-developed power management system. We found that the single-equivalent SMFC and the scaled-up SMFCs produced similar power for the first 155 days. However, in the long term (>155 days) our scaled-up SMFCs generated significantly more power than the single-equivalent SMFC (2.33 mW vs. 0.64 mW). Microbial community analysis of the single-equivalent SMFC and the scaled-up SMFCs showed very similar results, demonstrating that the difference in operation mode had no significant effect on the microbial community. When we compared scaled-up SMFCs with parallel SMFCs, we found that the scaled-up SMFCs generated more power. Our novel approach demonstrates that SMFCs can be scaled up electronically.


September 22, 2019  |  

The features of mucosa-associated microbiota in primary sclerosing cholangitis.

Little is known about the role of the microbiome in primary sclerosing cholangitis.To explore the mucosa-associated microbiota in primary sclerosing cholangitis (PSC) patients across different locations in the gut, and to compare it with inflammatory bowel disease (IBD)-only patients and healthy controls.Biopsies from the terminal ileum, right colon, and left colon were collected from patients and healthy controls undergoing colonoscopy. Microbiota profiling using bacterial 16S rRNA sequencing was performed on all biopsies.Forty-four patients were recruited: 20 with PSC (19 with PSC-IBD and one with PSC-only), 15 with IBD-only and nine healthy controls. The overall microbiome profile was similar throughout different locations in the gut. No differences in the global microbiome profile were found. However, we observed significant PSC-associated enrichment in Barnesiellaceae at the family level, and in Blautia and an unidentified Barnesiellaceae at the genus level. At the operational taxa unit level, most shifts in PSC were observed in Clostridiales and Bacteroidales orders, with approximately 86% of shifts occurring within the former order.The overall microbiota profile was similar across multiple locations in the gut from the same individual regardless of disease status. In this study, the mucosa associated-microbiota of patients with primary sclerosing cholangitis was characterised by enrichment of Blautia and Barnesiellaceae and by major shifts in operational taxa units within Clostridiales order.© 2016 John Wiley & Sons Ltd.


September 22, 2019  |  

Transcriptomic study of Herpes simplex virus type-1 using full-length sequencing techniques

Herpes simplex virus type-1 (HSV-1) is a human pathogenic member of the Alphaherpesvirinae subfamily of herpesviruses. The HSV-1 genome is a large double-stranded DNA specifying about 85 protein coding genes. The latest surveys have demonstrated that the HSV-1 transcriptome is much more complex than it had been thought before. Here, we provide a long-read sequencing dataset, which was generated by using the RSII and Sequel systems from Pacific Biosciences (PacBio), as well as MinION sequencing system from Oxford Nanopore Technologies (ONT). This dataset contains 39,096 reads of inserts (ROIs) mapped to the HSV-1 genome (X14112) in RSII sequencing, while Sequel sequencing yielded 77,851 ROIs. The MinION cDNA sequencing altogether resulted in 158,653 reads, while the direct RNA-seq produced 16,516 reads. This dataset can be utilized for the identification of novel HSV RNAs and transcripts isoforms, as well as for the comparison of the quality and length of the sequencing reads derived from the currently available long- read sequencing platforms. The various library preparation approaches can also be compared with each other.


September 22, 2019  |  

Transcriptional fates of human-specific segmental duplications in brain.

Despite the importance of duplicate genes for evolutionary adaptation, accurate gene annotation is often incomplete, incorrect, or lacking in regions of segmental duplication. We developed an approach combining long-read sequencing and hybridization capture to yield full-length transcript information and confidently distinguish between nearly identical genes/paralogs. We used biotinylated probes to enrich for full-length cDNA from duplicated regions, which were then amplified, size-fractionated, and sequenced using single-molecule, long-read sequencing technology, permitting us to distinguish between highly identical genes by virtue of multiple paralogous sequence variants. We examined 19 gene families as expressed in developing and adult human brain, selected for their high sequence identity (average >99%) and overlap with human-specific segmental duplications (SDs). We characterized the transcriptional differences between related paralogs to better understand the birth-death process of duplicate genes and particularly how the process leads to gene innovation. In 48% of the cases, we find that the expressed duplicates have changed substantially from their ancestral models due to novel sites of transcription initiation, splicing, and polyadenylation, as well as fusion transcripts that connect duplication-derived exons with neighboring genes. We detect unannotated open reading frames in genes currently annotated as pseudogenes, while relegating other duplicates to nonfunctional status. Our method significantly improves gene annotation, specifically defining full-length transcripts, isoforms, and open reading frames for new genes in highly identical SDs. The approach will be more broadly applicable to genes in structurally complex regions of other genomes where the duplication process creates novel genes important for adaptive traits.© 2018 Dougherty et al.; Published by Cold Spring Harbor Laboratory Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.