Menu
July 7, 2019  |  

IncHI2 plasmids are the key vectors responsible for oqxAB transmission among Salmonella species.

This study reported and analysed the complete sequences of two oqxAB-bearing IncHI2 plasmids harboured by a clinical S. Typhimurium strain and an S. Indiana strain of animal origin, respectively. Particularly, pA3T recovered from S. Indiana comprised the resistance determinants oqxAB, aac(6′)Ib-cr, fosA3 and blaCTX-M-14 Further genetic screening of 63 oqxAB-positive Salmonella spp. isolates revealed that the majority carried IncHI2 plasmids, confirming that such plasmids play a pivotal role in dissemination of oqxAB in Salmonella spp.. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Multiplication of blaOXA-23 is common in clinical Acinetobacter baumannii, but does not enhance carbapenem resistance.

To investigate the copy number of blaOXA-23 and its correlation with carbapenem resistance in carbapenem-resistant Acinetobacter baumannii (CRAB).A total of 113 blaOXA-23-positive clinical CRAB isolates were collected from two hospitals in Zhejiang province, China. Their genetic relatedness was determined by MLST. The MIC of imipenem was determined using the agar diffusion method and the copy number of blaOXA-23 was measured using quantitative real-time PCR (qRT-PCR). The complete genomes of five clinical CRAB strains were sequenced using PacBio technology to investigate the multiplication mechanism of blaOXA-23.Most of the isolates (100/113) belonged to global clone II and the MIC of imipenem ranged from 16 to 96 mg/L. The gene blaOXA-23 resided exclusively in Tn2006 or Tn2009. Approximately 38% of the isolates carried two or more copies of blaOXA-23. The copy number of blaOXA-23 was not correlated with the MIC of imipenem. Within the five sequenced strains, multiple copies of blaOXA-23 were either tandemly clustered or independently inserted at different genomic sites.Multiplication of blaOXA-23 is common in CRAB, but does not enhance carbapenem resistance. Multiplication can be present in the form of either tandem amplifications or independent insertions at different sites.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Recent “omics” advances in Helicobacter pylori.

The development of high-throughput whole genome sequencing (WGS) technologies is changing the face of microbiology, facilitating the comparison of large numbers of genomes from different lineages of a same organism. Our aim was to review the main advances on Helicobacter pylori “omics” and to understand how this is improving our knowledge of the biology, diversity and pathogenesis of H. pylori. Since the first H. pylori isolate was sequenced in 1997, 510 genomes have been deposited in the NCBI archive, providing a basis for improved understanding of the epidemiology and evolution of this important pathogen. This review focuses on works published between April 2015 and March 2016. Helicobacter “omics” is already making an impact and is a growing research field. Ultimately these advances will be translated into a routine clinical laboratory setting in order to improve public health.© 2016 John Wiley & Sons Ltd.


July 7, 2019  |  

Emergence of ileS2-carrying, multidrug-resistant plasmids in Staphylococcus lugdunensis.

Of 137 Staphylococcus lugdunensis isolates collected from two nephrology centers in Hong Kong, 10 (7.3%) and 3 (2.2%) isolates had high-level and low-level mupirocin resistance, respectively. Isolates with high-level resistance contained the plasmid-mediated ileS2 gene, while isolates with low-level resistance contained the mutation V588F within the chromosomal ileS gene. All but one of the ileS2-positive isolates belong to the predominating clone HKU1. Plasmids carrying the ileS2 gene were mosaic and also cocarry multiple other resistance determinants. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Whole-genome characterization of epidemic Neisseria meningitidis serogroup C and resurgence of serogroup W, Niger, 2015.

In 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks in Nigeria during 2013-2014 and for which a clonal complex has not yet been defined. The NmC isolates from Niger were substantially different from other NmC isolates collected globally. All NmW isolates belonged to clonal complex 11 and were closely related to the isolates causing recent outbreaks in Africa.


July 7, 2019  |  

Transfer of the methicillin resistance genomic island among staphylococci by conjugation.

Methicillin resistance creates a major obstacle for treatment of Staphylococcus aureus infections. The resistance gene, mecA, is carried on a large (20 kb to?>?60 kb) genomic island, staphylococcal cassette chromosome mec (SCCmec), that excises from and inserts site-specifically into the staphylococcal chromosome. However, although SCCmec has been designated a mobile genetic element, a mechanism for its transfer has not been defined. Here we demonstrate the capture and conjugative transfer of excised SCCmec. SCCmec was captured on pGO400, a mupirocin-resistant derivative of the pGO1/pSK41 staphylococcal conjugative plasmid lineage, and pGO400::SCCmec (pRM27) was transferred by filter-mating into both homologous and heterologous S. aureus recipients representing a range of clonal complexes as well as S. epidermidis. The DNA sequence of pRM27 showed that SCCmec had been transferred in its entirety and that its capture had occurred by recombination between IS257/431 elements present on all SCCmec types and pGO1/pSK41 conjugative plasmids. The captured SCCmec excised from the plasmid and inserted site-specifically into the chromosomal att site of both an isogenic S. aureus and a S. epidermidis recipient. These studies describe a means by which methicillin resistance can be environmentally disseminated and a novel mechanism, IS-mediated recombination, for the capture and conjugative transfer of genomic islands. © 2016 John Wiley & Sons Ltd.


July 7, 2019  |  

Highlights of the 11th International Bordetella Symposium: from basic biology to vaccine development.

Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Selvamicin, an atypical antifungal polyene from two alternative genomic contexts.

The bacteria harbored by fungus-growing ants produce a variety of small molecules that help maintain a complex multilateral symbiosis. In a survey of antifungal compounds from these bacteria, we discovered selvamicin, an unusual antifungal polyene macrolide, in bacterial isolates from two neighboring ant nests. Selvamicin resembles the clinically important antifungals nystatin A1 and amphotericin B, but it has several distinctive structural features: a noncationic 6-deoxymannose sugar at the canonical glycosylation site and a second sugar, an unusual 4-O-methyldigitoxose, at the opposite end of selvamicin’s shortened polyene macrolide. It also lacks some of the pharmacokinetic liabilities of the clinical agents and appears to have a different target. Whole genome sequencing revealed the putative type I polyketide gene cluster responsible for selvamicin’s biosynthesis including a subcluster of genes consistent with selvamicin’s 4-O-methyldigitoxose sugar. Although the selvamicin biosynthetic cluster is virtually identical in both bacterial producers, in one it is on the chromosome, in the other it is on a plasmid. These alternative genomic contexts illustrate the biosynthetic gene cluster mobility that underlies the diversity and distribution of chemical defenses by the specialized bacteria in this multilateral symbiosis.


July 7, 2019  |  

Genomic analyses of multidrug resistant Pseudomonas aeruginosa PA1 resequenced by single-molecule real-time sequencing.

As a third-generation sequencing (TGS) method, single-molecule real-time (SMRT) technology provides long read length, and it is well suited for resequencing projects and de novo assembly. In the present study, Pseudomonas aeruginosa PA1 was characterized and resequenced using SMRT technology. PA1 was also subjected to genomic, comparative and pan-genomic analyses. The multidrug resistant strain PA1 possesses a 6,498,072 bp genome and a sequence type of ST-782. The genome of PA1 was also visualized, and the results revealed the details of general genome annotations, virulence factors, regulatory proteins (RPs), secretion system proteins, type II toxin-antitoxin (T-A) pairs and genomic islands. Whole genome comparison analysis suggested that PA1 exhibits similarity to other P. aeruginosa strains but differs in terms of horizontal gene transfer (HGT) regions, such as prophages and genomic islands. Phylogenetic analyses based on 16S rRNA sequences demonstrated that PA1 is closely related to PAO1, and P. aeruginosa strains can be divided into two main groups. The pan-genome of P. aeruginosa consists of a core genome of approximately 4,000 genes and an accessory genome of at least 6,600 genes. The present study presented a detailed, visualized and comparative analysis of the PA1 genome, to enhance our understanding of this notorious pathogen. © 2016 The Author(s).


July 7, 2019  |  

Genome sequencing and comparative genomics analysis revealed pathogenic potential in Penicillium capsulatum as a novel fungal pathogen belonging to Eurotiales.

Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptomes of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNPs in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen.


July 7, 2019  |  

Genomic insights into Campylobacter jejuni virulence and population genetics

Campylobacter jejuni has long been recognized as a main food-borne pathogen in many parts of the world. Natural reservoirs include a wide variety of domestic and wild birds and mammals, whose intestines offer a suitable biological niche for the survival and dissemination of the organism. Understanding the genetic basis of the biology and pathogenicity of C. jejuni is vital to prevent and control Campylobacter-associated infections. The recent progress in sequencing techniques has allowed for a rapid increase in our knowledge of the molecular biology and the genetic structures of Campylobacter. Single-molecule realtime (SMRT) sequencing, which goes beyond four-base sequencing, revealed the role of DNA methylation in modulating the biology and virulence of C. jejuni at the level of epigenetics. In this review, we will provide an up-to-date review on recent advances in understanding C. jejuni genomics, including structural features of genomes, genetic traits of virulence, population genetics, and epigenetics.


July 7, 2019  |  

Complete genome sequence of a colistin resistance gene (mcr-1)-bearing isolate of Escherichia coli from the United States.

Transmissible colistin resistance conferred by the mcr-1 gene-bearing IncI2 plasmid has been recently reported in Escherichia coli in the United States. We report here the completed genome sequence of a second E. coli strain isolated from swine in the United States that carried the mcr-1 gene on an IncI2-type plasmid. Copyright © 2016 Meinersmann et al.


July 7, 2019  |  

Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense.

Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we provided immunologic and virulence-related insights into the M. colombiense genome as a model of an opportunistic pathogen in the MAC. By using bioinformatic tools we found that M. colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and HspX production, and loss of the ESX-1 locus. This information not only sheds light on our understanding the virulence mechanisms used by opportunistic MAC pathogens but also has great potential for the designing of species-specific diagnostic tools.


July 7, 2019  |  

Complete genome sequence of Clostridium estertheticum DSM 8809, a microbe identified in spoiled vacuum packed beef.

Blown pack spoilage (BPS) is a major issue for the beef industry. Etiological agents of BPS involve members of a group of Clostridium species, including Clostridium estertheticum which has the ability to produce gas, mostly carbon dioxide, under anaerobic psychotrophic growth conditions. This spore-forming bacterium grows slowly under laboratory conditions, and it can take up to 3 months to produce a workable culture. These characteristics have limited the study of this commercially challenging bacterium. Consequently information on this bacterium is limited and no effective controls are currently available to confidently detect and manage this production risk. In this study the complete genome of C. estertheticum DSM 8809 was determined by SMRT(®) sequencing. The genome consists of a circular chromosome of 4.7 Mbp along with a single plasmid carrying a potential tellurite resistance gene tehB and a Tn3-like resolvase-encoding gene tnpR. The genome sequence was searched for central metabolic pathways that would support its biochemical profile and several enzymes contributing to this phenotype were identified. Several putative antibiotic/biocide/metal resistance-encoding genes and virulence factors were also identified in the genome, a feature that requires further research. The availability of the genome sequence will provide a basic blueprint from which to develop valuable biomarkers that could support and improve the detection and control of this bacterium along the beef production chain.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.