Menu
June 1, 2021  |  

The resurgence of reference quality genome sequence.

Since the advent of Next-Generation Sequencing (NGS), the cost of de novo genome sequencing and assembly have dropped precipitately, which has spurred interest in genome sequencing overall. Unfortunately the contiguity of the NGS assembled sequences, as well as the accuracy of these assemblies have suffered. Additionally, most NGS de novo assemblies leave large portions of genomes unresolved, and repetitive regions are often collapsed. When compared to the reference quality genome sequences produced before the NGS era, the new sequences are highly fragmented and often prove to be difficult to properly annotate. In some cases the contiguous portions are smaller than the average gene size making the sequence not nearly as useful for biologists as the earlier reference quality genomes including of Human, Mouse, C. elegans, or Drosophila. Recently, new 3rd generation sequencing technologies, long-range molecular techniques, and new informatics tools have facilitated a return to high quality assembly. We will discuss the capabilities of the technologies and assess their impact on assembly projects across the tree of life from small microbial and fungal genomes through large plant and animal genomes. Beyond improvements to contiguity, we will focus on the additional biological insights that can be made with better assemblies, including more complete analysis genes in their flanking regulatory context, in-depth studies of transposable elements and other complex gene families, and long-range synteny analysis of entire chromosomes. We will also discuss the need for new algorithms for representing and analyzing collections of many complete genomes at once.


June 1, 2021  |  

SMRT Sequencing of DNA and RNA samples extracted from formalin-fixed and paraffin embedded tissues using adaptive focused acoustics by Covaris.

Recent advances in next-generation sequencing have led to an increased use of formalin-fixed and paraffin-embedded (FFPE) tissues for medical samples in disease and scientific research. Single Molecule, Real-Time (SMRT) Sequencing offers a unique advantage for direct analysis of FFPE samples without amplification. However, obtaining ample long-read information from FFPE samples has been a challenge due to the quality and quantity of the extracted DNA. FFPE samples often contain damaged sites, including breaks in the backbone and missing or altered nucleotide bases, which directly impact sequencing and target enrichment. Additionally, the quality and quantity of the recovered DNA vary depending on the extraction methods used. We have evaluated the Covaris® Adaptive Focused Acoustics (AFA) system as a method for obtaining high molecular weight DNA suitable for SMRTbell™ template preparation and subsequent PacBio RS II sequencing. To test the Covaris system, we extracted DNA from normal kidney FFPE scrolls acquired from the Cooperative Human Tissue Network (CHTN), University of Pennsylvania. Damaged sites in the extracted DNA were repaired using a DNA Damage Repair step, and the treated DNA was constructed into SMRTbell libraries for sequencing on the PacBio System. Using the same repaired DNA, we also tested the efficiency of PCR in amplifying targets of up to 10 kb. The resulting amplicons were also constructed into SMRTbell templates for full-length sequencing on the PacBio System. We found the Adaptive Focused Acoustics (AFA) system by Covaris to be effective. This system is easy and simple to use, and the resulting DNA is compatible with SMRTbell library preparation for targeted and whole genome SMRT Sequencing. The data presented here demonstrates feasibility of SMRT Sequencing with FFPE samples.


June 1, 2021  |  

Full-length HIV-1 env deep sequencing in a donor with broadly neutralizing V1/V2 antibodies.

Background: Understanding the co-evolution of HIV populations and broadly neutralizing antibodies (bNAbs) may inform vaccine design. Novel long-read, next-generation sequencing methods allow, for the first time, full-length deep sequencing of HIV env populations. Methods: We longitudinally examined HIV-1 env populations (12 time points) in a subtype A infected individual from the IAVI primary infection cohort (Protocol C) who developed bNAbs (62% ID50>50 on a diverse panel of 105 viruses) targeting the V1/V2 loop region. We developed a PacBio single molecule, real-time sequencing protocol to deeply sequence full-length env from HIV RNA. Bioinformatics tools were developed to align env sequences, infer phylogenies, and interrogate escape dynamics of key residues and glycosylation sites. PacBio env sequences were compared to env sequences generated through amplification and cloning. Env dynamics and viral escape motif evolution were interpreted in the context of the development V1/V2-targeting broadly neutralizing antibodies. Results: We collected a median of 6799 (range: 1770-14727) high quality full-length HIV env circular consensus sequences (CCS) per SMRT Cell, per time point. Using only CCS reads comprised of 6 or more passes over the HIV env insert (= 16 kb read length) ensured that our median per-base accuracy was 99.7%. A phylogeny inferred with PacBio and 100 cloned env sequences (10 time points) found the cloned sequences evenly distributed among PacBio sequences. Viral escape from the V1/V2 targeted bNAbs was evident at V2 positions 160, 166, 167, 169 and 181 (HxB2 numbering), exhibiting several distinct escape pathways by 40 months post-infection. Conclusions: Our PacBio full-length env sequencing method allowed unprecedented view and ability to characterize HIV-1 env dynamics throughout the first four years of infection. Longitudinal full-length env deep sequencing allows accurate phylogenetic inference, provides a detailed picture of escape dynamics in epitope regions, and can identify minority variants, all of which will prove critical for increasing our understanding of how env evolution drives the development of antibody breadth.


June 1, 2021  |  

Best practices for whole-genome de novo sequencing with long-read SMRT Sequencing.

With the introduction of P6-C4 chemistry, PacBio has made significant strides with Single Molecule, Real-Time (SMRT) Sequencing . Read lengths averaging between 10 and 15 kb can be now be achieved with extreme reads in the distribution of > 60 kb. The chemistry attains a consensus accuracy of 99.999% (QV50) at 30x coverage which coupled with an increased throughput from the PacBio RS II platform (500 Mb – 1 Gb per SMRT Cell) makes larger genome projects more tractable. These combined advancements in technology deliver results that rival the quality of Sanger “clone-by-clone” sequencing efforts; resulting in closed microbial genomes and highly contiguous de novo assembly of complex eukaryotes on multi-Gbase scale using SMRT Sequencing as the standalone technology. We present here the guidelines and best practices to achieve optimal results when employing PacBio-only whole genome shotgun sequencing strategies. Specific sequencing examples for plant and animal genomes are discussed with SMRTbell library preparation and purification methods for obtaining long insert libraries to generate optimal sequencing results. The benefits of long reads are demonstrated by the highly contiguous assemblies yielding contig N50s of over 5 Mb compared to similar assemblies using next-generation short-read approaches. Finally, guidelines will be presented for planning out projects for the de novo assembly of large genomes.


June 1, 2021  |  

Full-length cDNA sequencing of alternatively spliced isoforms provides insight into human diseases.

The majority of human genes are alternatively spliced, making it possible for most genes to generate multiple proteins. The process of alternative splicing is highly regulated in a developmental-stage and tissue-specific manner. Perturbations in the regulation of these events can lead to disease in humans. Alternative splicing has been shown to play a role in human cancer, muscular dystrophy, Alzheimer’s, and many other diseases. Understanding these diseases requires knowing the full complement of mRNA isoforms. Microarrays and high-throughput cDNA sequencing have become highly successful tools for studying transcriptomes, however these technologies only provide small fragments of transcripts and building complete transcript isoforms has been very challenging. We have developed the Iso-Seq technique, which is capable of sequencing full-length, single-molecule cDNA sequences. The method employs SMRT Sequencing to generate individual molecules with average read lengths of more than 10 kb and some as long as 40 kb. As most transcripts are from 1 to 10 kb, we can sequence through entire RNA molecules, requiring no fragmentation or post-sequencing assembly. Jointly with the sequencing method, we developed a computational pipeline that polishes these full-length transcript sequences into high-quality, non-redundant transcript consensus sequences. Iso-Seq sequencing enables unambiguous identification of alternative splicing events, alternative transcriptional start and poly-A sites, and transcripts from gene fusion events. Knowledge of the complete set of isoforms from a sample of interest is key for accurate quantification of isoform abundance when using any technology for transcriptome studies. Here we characterize the full-length transcriptome of normal human tissues, paired tumor/normal samples from breast cancer, and a brain sample from a patient with Alzheimer’s using deep Iso-Seq sequencing. We highlight numerous discoveries of novel alternatively spliced isoforms, gene-fusions events, and previously unannotated genes that will improve our understanding of human diseases.


June 1, 2021  |  

Multiplexing human HLA class I & II genotyping with DNA barcode adapters for high throughput research.

Human MHC class I genes HLA-A, -B, -C, and class II genes HLA-DR, -DP and -DQ, play a critical role in the immune system as major factors responsible for organ transplant rejection. The have a direct or linkage-based association with several diseases, including cancer and autoimmune diseases, and are important targets for clinical and drug sensitivity research. HLA genes are also highly polymorphic and their diversity originates from exonic combinations as well as recombination events. A large number of new alleles are expected to be encountered if these genes are sequenced through the UTRs. Thus allele-level resolution is strongly preferred when sequencing HLA genes. Pacific Biosciences has developed a method to sequence the HLA genes in their entirety within the span of a single read taking advantage of long read lengths (average >10 kb) facilitated by SMRT technology. A highly accurate consensus sequence (=99.999 or QV50 demonstrated) is generated for each allele in a de novo fashion by our SMRT Analysis software. In the present work, we have combined this imputation-free, fully phased, allele-specific consensus sequence generation workflow and a newly developed DNA-barcode-tagged SMRTbell sample preparation approach to multiplex 96 individual samples for sequencing all of the HLA class I and II genes. Commercially available NGS-go reagents for full-length HLA class I and relevant exons of class II genes were amplified for hi-resolution HLA sequencing. The 96 samples included 72 that are part of UCLA reference panel and had pre-typing information available for 2 fields, based on gold standard SBT methods. SMRTbell adapters with 16 bp barcode tags were ligated to long amplicons in symmetric pairing. PacBio sequencing was highly effective in generating accurate, phased sequences of full-length alleles of HLA genes. In this work we demonstrate scalability of HLA sequencing using off the shelf assays for research applications to find biological significance in full-length sequencing.


June 1, 2021  |  

Toward comprehensive genomics analysis with de novo assembly.

Whole genome sequencing can provide comprehensive information important for determining the biochemical and genetic nature of all elements inside a genome. The high-quality genome references produced from past genome projects and advances in short-read sequencing technologies have enabled quick and cheap analysis for simple variants. However even with the focus on genome-wide resequencing for SNPs, the heritability of more than 50% of human diseases remains elusive. For non-human organisms, high-contiguity references are deficient, limiting the analysis of genomic features. The long and unbiased reads from single molecule, real-time (SMRT) Sequencing and new de novo assembly approaches have demonstrated the ability to detect more complicated variants and chromosome-level phasing. Moreover, with the recent advance of bioinformatics algorithms and tools, the computation tasks for completing high-quality de novo assembly of large genomes becomes feasible with commodity hardware. Ongoing development in sequencing technologies and bioinformatics will likely lead to routine generation of high-quality reference assemblies in the future. We discuss the current state of art and the challenges in bioinformatics toward such a goal. More specifically, explicit examples of pragmatic computational requirements for assembling mammalian-size genomes and algorithms suitable for processing diploid genomes are discussed.


June 1, 2021  |  

Whole genome sequencing and epigenome characterization of cancer cells using the PacBio platform.

The comprehensive characterization of cancer genomes and epigenomes for understanding drug resistance remains an important challenge in the field of oncology. For example, PC-9, a non-small cell lung cancer (NSCL) cell line, contains a deletion mutation in exon 19 (DelE746A750) of EGRF that renders it sensitive to erlotinib, an EGFR inhibitor. However, sustained treatment of these cells with erlotinib leads to drug-tolerant cell populations that grow in the presence of erlotinib. However, the resistant cells can be resensitized to erlotinib upon treatment with methyltransferase inhibitors, suggesting a role of epigenetic modification in development of drug resistance. We have characterized for the first time cancer genomes of both drug-sensitive and drug-resistant PC- 9 cells using long-read PacBio sequencing. The PacBio data allowed us to generate a high-quality, de novo assembly of this cancer genome, enabling the detection of forms of genomic variations at all size scales, including SNPs, structural variations, copy number alterations, gene fusions, and translocations. The data simultaneously provide a global view of epigenetic DNA modifications such as methylation. We will present findings on large-scale changes in the methylation status across the cancer genome as a function of drug sensitivity.


June 1, 2021  |  

Full-length env deep sequencing in a donor with broadly neutralizing V1/V2 antibodies.

Background: Understanding the co-evolution of HIV populations and broadly neutralizing antibody (bNAb) lineages may inform vaccine design. Novel long-read, next-generation sequencing methods allow, for the first time, full-length deep sequencing of HIV env populations. Methods: We longitudinally examined env populations (12 time points) in a subtype A infected individual from the IAVI primary infection cohort (Protocol C) who developed bNAbs (62% ID50>50 on a diverse panel of 105 viruses) targeting the V1/V2 region. We developed a Pacific Biosciences single molecule, real-time sequencing protocol to deeply sequence full-length env from HIV RNA. Bioinformatics tools were developed to align env sequences, infer phylogenies, and interrogate escape dynamics of key residues and glycosylation sites. PacBio env sequences were compared to env sequences generated through amplification and cloning. Env dynamics were interpreted in the context of the development of a V1/V2-targeting bNAb lineage isolated from the donor. Results: We collected a median of 6799 high quality full-length env sequences per timepoint (median per-base accuracy of 99.7%). A phylogeny inferred with PacBio and 100 cloned env sequences (10 time points) found cloned env sequences evenly distributed among PacBio sequences. Phylogenetic analyses also revealed a potential transient intra-clade superinfection visible as a minority variant (~5%) at 9 months post-infection (MPI), and peaking in prevalence at 12MPI (~64%), just preceding the development of heterologous neutralization. Viral escape from the bNAb lineage was evident at V2 positions 160, 166, 167, 169 and 181 (HxB2 numbering), exhibiting several distinct escape pathways by 40MPI. Conclusions: Our PacBio full-length env sequencing method allowed unprecedented characterization of env dynamics and revealed an intra-clade superinfection that was not detected through conventional methods. The importance of superinfection in the development of this donor’s V1/V2-directed bNAb lineage is under investigation. Longitudinal full-length env deep sequencing allows accurate phylogenetic inference, provides a detailed picture of escape dynamics in epitope regions, and can identify minority variants, all of which may prove useful for understanding how env evolution can drive the development of antibody breadth.


June 1, 2021  |  

Full-length isoform sequencing of the human MCF-7 cell line using PacBio long reads.

While advances in RNA sequencing methods have accelerated our understanding of the human transcriptome, isoform discovery remains a challenge because short read lengths require complicated assembly algorithms to infer the contiguity of full-length transcripts. With PacBio’s long reads, one can now sequence full-length transcript isoforms up to 10 kb. The PacBio Iso- Seq protocol produces reads that originate from independent observations of single molecules, meaning no assembly is needed. Here, we sequenced the transcriptome of the human MCF-7 breast cancer cell line using the Clontech SMARTer® cDNA preparation kit and the PacBio RS II. Using PacBio Iso-Seq bioinformatics software, we obtained 55,770 unique, full-length, high-quality transcript sequences that were subsequently mapped back to the human genome with = 99% accuracy. In addition, we identified both known and novel fusion transcripts. To assess our results, we compared the predicted ORFs from the PacBio data against a published mass spectrometry dataset from the same cell line. 84% of the proteins identified with the Uniprot protein database were recovered by the PacBio predictions. Notably, 251 peptides solely matched to the PacBio generated ORFs and were entirely novel, including abundant cases of single amino acid polymorphisms, cassette exon splicing and potential alternative protein coding frames.


June 1, 2021  |  

Assembly of complete KIR haplotypes from a diploid individual by the direct sequencing of full-length fosmids.

We show that linearizing and directly sequencing full-length fosmids simplifies the assembly problem such that it is possible to unambiguously assemble individual haplotypes for the highly repetitive 100-200 kb killer Ig-like receptor (KIR) gene loci of chromosome 19. A tiling of targeted fosmids can be used to clone extended lengths of genomic DNA, 100s of kb in length, but repeat complexity in regions of particular interest, such as the KIR locus, means that sequence assembly of pooled samples into complete haplotypes is difficult and in many cases impossible. The current maximum read length generated by SMRT Sequencing exceeds the length of a 40 kb fosmid; it is therefore possible to span an entire fosmid in one sequencing read. Shearing, sequencing and assembling fosmids in a shotgun approach is prone to errors when the underlying sequence is highly repetitive. We show that it is possible to directly sequence linearized fosmids and generate a high-quality consensus by simple alignment, removing the need for an error-prone assembly step. The high-quality sequence of complete fosmids can then be tiled into full haplotypes. We demonstrate the method on DNA samples from a number of individuals and fully recover the sequence of both haplotypes from a pool of KIR fosmids. The ability to haplotype and sequence complex immunogenetic regions will bring exciting opportunities to explore the evolution of disease associations of the immune sub-genome. This simple and robust approach can be scaled-up allowing a complex genomic region to be sequenced at a population level. We expect such sequencing to be valuable in disease association research.


June 1, 2021  |  

Highly contiguous de novo human genome assembly and long-range haplotype phasing using SMRT Sequencing

The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are important in understanding the genetic basis for human disease and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid aware de novo assembly of Craig Venter’s well-studied genome.


June 1, 2021  |  

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing.

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments generally use short-read, second-generation sequencing, which results in data processing difficulties. For example, reads less than 1 kb in length will likely not cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, single molecule, real-time (SMRT) Sequencing reads in the 1-2 kb range, with >99% accuracy can be efficiently generated for low amounts of input DNA. 10 ng of input DNA sequenced in 4 SMRT Cells would generate >100,000 such reads. While throughput is low compared to second-generation sequencing, the reads are a true random sampling of the underlying community, since SMRT Sequencing has been shown to have no sequence-context bias. Long read lengths mean that that it would be reasonable to expect a high number of the reads to include gene fragments useful for analysis.


June 1, 2021  |  

Analysis of full-length metagenomic 16S genes by Single Molecule, Real-Time Sequencing

High-throughput sequencing of the complete 16S rRNA gene has become a valuable tool for characterizing microbial communities. However, the short reads produced by second-generation sequencing cannot provide taxonomic classification below the genus level. In this study, we demonstrate the capability of PacBio’s Single Molecule, Real-Time (SMRT) Sequencing to generate community profiles using mock microbial community samples from BEI Resources. We also evaluate multiplexing capabilities using PacBio barcodes on pooled samples comprising heterogeneous 16S amplicon populations representing soil, fecal, and mock communities.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.