X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Author(s): Murrell, Ben and Ignacio, Caroline and Pond, Sergei L. Kosakovsky and Richman, Douglas and Smith, Davey and Laird Smith, Melissa and Paxinos, Ellen E., and Landais, Elise and Poignard, Pascal and Phung, Pham

Background: Understanding the co-evolution of HIV populations and broadly neutralizing antibody (bNAb) lineages may inform vaccine design. Novel long-read, next-generation sequencing methods allow, for the first time, full-length deep sequencing of HIV env populations. Methods: We longitudinally examined env populations (12 time points) in a subtype A infected individual from the IAVI primary infection cohort (Protocol C) who developed bNAbs (62% ID50>50 on a diverse panel of 105 viruses) targeting the V1/V2 region. We developed a Pacific Biosciences single molecule, real-time sequencing protocol to deeply sequence full-length env from HIV RNA. Bioinformatics tools were developed to align env sequences, infer phylogenies, and interrogate escape dynamics of key residues and glycosylation sites. PacBio env sequences were compared to env sequences generated through amplification and cloning. Env dynamics were interpreted in the context of the development of a V1/V2-targeting bNAb lineage isolated from the donor. Results: We collected a median of 6799 high quality full-length env sequences per timepoint (median per-base accuracy of 99.7%). A phylogeny inferred with PacBio and 100 cloned env sequences (10 time points) found cloned env sequences evenly distributed among PacBio sequences. Phylogenetic analyses also revealed a potential transient intra-clade superinfection visible as a minority variant (~5%) at 9 months post-infection (MPI), and peaking in prevalence at 12MPI (~64%), just preceding the development of heterologous neutralization. Viral escape from the bNAb lineage was evident at V2 positions 160, 166, 167, 169 and 181 (HxB2 numbering), exhibiting several distinct escape pathways by 40MPI. Conclusions: Our PacBio full-length env sequencing method allowed unprecedented characterization of env dynamics and revealed an intra-clade superinfection that was not detected through conventional methods. The importance of superinfection in the development of this donor’s V1/V2-directed bNAb lineage is under investigation. Longitudinal full-length env deep sequencing allows accurate phylogenetic inference, provides a detailed picture of escape dynamics in epitope regions, and can identify minority variants, all of which may prove useful for understanding how env evolution can drive the development of antibody breadth.

Organization: University of California, San Diego
Year: 2015

View Conference Poster

 

Stay
Current

Visit our blog »