Menu
April 21, 2020

Broadly Neutralizing Antibodies Targeting New Sites of Vulnerability in Hepatitis C Virus E1E2.

Increasing evidence indicates that broadly neutralizing antibodies (bNAbs) play an important role in immune-mediated control of hepatitis C virus (HCV) infection, but the relative contribution of neutralizing antibodies targeting antigenic sites across the HCV envelope (E1 and E2) proteins is unclear. Here, we isolated thirteen E1E2-specific monoclonal antibodies (MAbs) from B cells of a single HCV-infected individual who cleared one genotype 1a infection and then became persistently infected with a second genotype 1a strain. These MAbs bound six distinct discontinuous antigenic sites on the E1 protein, the E2 protein, or the E1E2 heterodimer. Three antigenic sites, designated AS108, AS112 (an N-terminal E1 site), and AS146, were distinct from previously described antigenic regions (ARs) 1 to 5 and E1 sites. Antibodies targeting four sites (AR3, AR4-5, AS108, and AS146) were broadly neutralizing. These MAbs also displayed distinct patterns of relative neutralizing potency (i.e., neutralization profiles) across a panel of diverse HCV strains, which led to complementary neutralizing breadth when they were tested in combination. Overall, this study demonstrates that HCV bNAb epitopes are not restricted to previously described antigenic sites, expanding the number of sites that could be targeted for vaccine development.IMPORTANCE Worldwide, more than 70 million people are infected with hepatitis C virus (HCV), which is a leading cause of hepatocellular carcinoma and liver transplantation. Despite the development of potent direct acting antivirals (DAAs) for HCV treatment, a vaccine is urgently needed due to the high cost of treatment and the possibility of reinfection after cure. Induction of multiple broadly neutralizing antibodies (bNAbs) that target distinct epitopes on the HCV envelope proteins is one approach to vaccine development. However, antigenic sites targeted by bNAbs in individuals with spontaneous control of HCV have not been fully defined. In this study, we characterize 13 monoclonal antibodies (MAbs) from a single person who cleared an HCV infection without treatment, and we identify 3 new sites targeted by neutralizing antibodies. The sites targeted by these MAbs could inform HCV vaccine development. Copyright © 2019 American Society for Microbiology.


April 21, 2020

Consensus and variations in cell line specificity among human metapneumovirus strains.

Human metapneumovirus (HMPV) has been a notable etiological agent of acute respiratory infection in humans, but it was not discovered until 2001, because HMPV replicates only in a limited number of cell lines and the cytopathic effect (CPE) is often mild. To promote the study of HMPV, several groups have generated green fluorescent protein (GFP)-expressing recombinant HMPV strains (HMPVGFP). However, the growing evidence has complicated the understanding of cell line specificity of HMPV, because it seems to vary notably among HMPV strains. In addition, unique A2b clade HMPV strains with a 180-nucleotide duplication in the G gene (HMPV A2b180nt-dup strains) have recently been detected. In this study, we re-evaluated and compared the cell line specificity of clinical isolates of HMPV strains, including the novel HMPV A2b180nt-dup strains, and six recombinant HMPVGFP strains, including the newly generated recombinant HMPV A2b180nt-dup strain, MG0256-EGFP. Our data demonstrate that VeroE6 and LLC-MK2 cells generally showed the highest infectivity with any clinical isolates and recombinant HMPVGFP strains. Other human-derived cell lines (BEAS-2B, A549, HEK293, MNT-1, and HeLa cells) showed certain levels of infectivity with HMPV, but these were significantly lower than those of VeroE6 and LLC-MK2 cells. Also, the infectivity in these suboptimal cell lines varied greatly among HMPV strains. The variations were not directly related to HMPV genotypes, cell lines used for isolation and propagation, specific genome mutations, or nucleotide duplications in the G gene. Thus, these variations in suboptimal cell lines are likely intrinsic to particular HMPV strains.


April 21, 2020

Single-Molecule Sequencing: Towards Clinical Applications.

In the past several years, single-molecule sequencing platforms, such as those by Pacific Biosciences and Oxford Nanopore Technologies, have become available to researchers and are currently being tested for clinical applications. They offer exceptionally long reads that permit direct sequencing through regions of the genome inaccessible or difficult to analyze by short-read platforms. This includes disease-causing long repetitive elements, extreme GC content regions, and complex gene loci. Similarly, these platforms enable structural variation characterization at previously unparalleled resolution and direct detection of epigenetic marks in native DNA. Here, we review how these technologies are opening up new clinical avenues that are being applied to pathogenic microorganisms and viruses, constitutional disorders, pharmacogenomics, cancer, and more.Copyright © 2018 Elsevier Ltd. All rights reserved.


April 21, 2020

High-Resolution Evolutionary Analysis of Within-Host Hepatitis C Virus Infection.

Despite recent breakthroughs in treatment of hepatitis C virus (HCV) infection, we have limited understanding of how virus diversity generated within individuals impacts the evolution and spread of HCV variants at the population scale. Addressing this gap is important for identifying the main sources of disease transmission and evaluating the risk of drug-resistance mutations emerging and disseminating in a population.We have undertaken a high-resolution analysis of HCV within-host evolution from 4 individuals coinfected with human immunodeficiency virus 1 (HIV-1). We used long-read, deep-sequenced data of full-length HCV envelope glycoprotein, longitudinally sampled from acute to chronic HCV infection to investigate the underlying viral population and evolutionary dynamics.We found statistical support for population structure maintaining the within-host HCV genetic diversity in 3 out of 4 individuals. We also report the first population genetic estimate of the within-host recombination rate for HCV (0.28 × 10-7 recombination/site/year), which is considerably lower than that estimated for HIV-1 and the overall nucleotide substitution rate estimated during HCV infection.Our findings indicate that population structure and strong genetic linkage shapes within-host HCV evolutionary dynamics. These results will guide the future investigation of potential HCV drug resistance adaptation during infection, and at the population scale. © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America.


April 21, 2020

Construction of full-length Japanese reference panel of class I HLA genes with single-molecule, real-time sequencing.

Human leukocyte antigen (HLA) is a gene complex known for its exceptional diversity across populations, importance in organ and blood stem cell transplantation, and associations of specific alleles with various diseases. We constructed a Japanese reference panel of class I HLA genes (ToMMo HLA panel), comprising a distinct set of HLA-A, HLA-B, HLA-C, and HLA-H alleles, by single-molecule, real-time (SMRT) sequencing of 208 individuals included in the 1070 whole-genome Japanese reference panel (1KJPN). For high-quality allele reconstruction, we developed a novel pipeline, Primer-Separation Assembly and Refinement Pipeline (PSARP), in which the SMRT sequencing and additional short-read data were used. The panel consisted of 139 alleles, which were all extended from known IPD-IMGT/HLA sequences, contained 40 with novel variants, and captured more than 96.5% of allelic diversity in 1KJPN. These newly available sequences would be important resources for research and clinical applications including high-resolution HLA typing, genetic association studies, and analyzes of cis-regulatory elements.


April 21, 2020

A draft genome for Spatholobus suberectus.

Spatholobus suberectus Dunn (S. suberectus), which belongs to the Leguminosae, is an important medicinal plant in China. Owing to its long growth cycle and increased use in human medicine, wild resources of S. suberectus have decreased rapidly and may be on the verge of extinction. De novo assembly of the whole S. suberectus genome provides us a critical potential resource towards biosynthesis of the main bioactive components and seed development regulation mechanism of this plant. Utilizing several sequencing technologies such as Illumina HiSeq X Ten, single-molecule real-time sequencing, 10x Genomics, as well as new assembly techniques such as FALCON and chromatin interaction mapping (Hi-C), we assembled a chromosome-scale genome about 798?Mb in size. In total, 748?Mb (93.73%) of the contig sequences were anchored onto nine chromosomes with the longest scaffold being 103.57?Mb. Further annotation analyses predicted 31,634 protein-coding genes, of which 93.9% have been functionally annotated. All data generated in this study is available in public databases.


October 23, 2019

Structural determination of the broadly reactive anti-IGHV1-69 anti-idiotypic antibody G6 and its idiotope.

The heavy chain IGHV1-69 germline gene exhibits a high level of polymorphism and shows biased use in protective antibody (Ab) responses to infections and vaccines. It is also highly expressed in several B cell malignancies and autoimmune diseases. G6 is an anti-idiotypic monoclonal Ab that selectively binds to IGHV1-69 heavy chain germline gene 51p1 alleles that have been implicated in these Ab responses and disease processes. Here, we determine the co-crystal structure of humanized G6 (hG6.3) in complex with anti-influenza hemagglutinin stem-directed broadly neutralizing Ab D80. The core of the hG6.3 idiotope is a continuous string of CDR-H2 residues starting with M53 and ending with N58. G6 binding studies demonstrate the remarkable breadth of binding to 51p1 IGHV1-69 Abs with diverse CDR-H3, light chain, and antigen binding specificities. These studies detail the broad expression of the G6 cross-reactive idiotype (CRI) that further define its potential role in precision medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019

HIV-1 infection of primary CD4(+) T cells regulates the expression of specific HERV-K (HML-2) elements.

Endogenous retroviruses (ERVs) occupy extensive regions of the human genome. Although many of these retroviral elements have lost their ability to replicate, those whose insertion took place more recently, such as the HML-2 group of HERV-K elements, still retain intact open reading frames and the capacity to produce certain viral RNA and/or proteins. Transcription of these ERVs is, however, tightly regulated by dedicated epigenetic control mechanisms. Nonetheless, it has been reported that some pathologic states, such as viral infections and certain cancers, coincide with ERV expression suggesting transcriptional reawakening is possible. HML-2 elements are reportedly induced during HIV-1 infection, but the conserved nature of these elements has, until recently, rendered their expression profiling problematic.Here, we provide comprehensive HERV-K HML-2 expression profiles specific for productively HIV-1 infected primary human CD4(+) T cells. We combined enrichment of HIV-1 infected cells using a reporter virus expressing a surface reporter for gentle and efficient purification with long-read Single Molecule Real-Time sequencing. We show that three HML-2 proviruses, 6q25.1, 8q24.3, and 19q13.42 are up-regulated on average between 3- and 5-fold in HIV-1 infected CD4(+) T cells. One provirus, HML-2 12q24.33, in contrast, was repressed in the presence of active HIV replication.In conclusion, this report identifies the HERV-K HML-2 loci whose expression profiles differ upon HIV-1 infection in primary human CD4(+) T cells. These data will help pave the way for further studies on the influence of endogenous retroviruses on HIV-1 replication.Importance Endogenous retroviruses inhabit big portions of our genome. And although they are mainly inert some of the evolutionarily younger members maintain the ability to express both RNA as well as proteins. We have developed an approach using long-read SMRT sequencing that produces long reads, that provides us with ability to obtain detailed and accurate HERV-K HML-2 expression profiles. We have now applied this approach to study HERV-K expression in the presence and absence of productive HIV-1 infection of primary human CD4(+) T cells. In addition to using SMRT sequencing, our strategy also includes the magnetic selection of the infected cells so that levels of background expression due to uninfected cells are kept at a minimum. The results in this manuscript provide the blueprint for in-depth studies of the interactions of the authentic upregulated HERV-K HML-2 elements and HIV-1. Copyright © 2017 American Society for Microbiology.


September 22, 2019

Evolution of selective-sequencing approaches for virus discovery and virome analysis.

Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019

Differential TGFß pathway targeting by miR-122 in humans and mice affects liver cancer metastasis.

Downregulation of a predominantly hepatocyte-specific miR-122 is associated with human liver cancer metastasis, whereas miR-122-deficient mice display normal liver function. Here we show a functional conservation of miR-122 in the TGFß pathway: miR-122 target site is present in the mouse but not human TGFßR1, whereas a noncanonical target site is present in the TGFß1 5’UTR in humans and other primates. Experimental switch of the miR-122 target between the receptor TGFßR1 and the ligand TGFß1 changes the metastatic properties of mouse and human liver cancer cells. High expression of TGFß1 in human primary liver tumours is associated with poor survival. We identify over 50 other miRNAs orthogonally targeting ligand/receptor pairs in humans and mice, suggesting that these are evolutionarily common events. These results reveal an evolutionary mechanism for miRNA-mediated gene regulation underlying species-specific physiological or pathological phenotype and provide a potentially valuable strategy for treating liver-associated diseases.


September 22, 2019

The role of MHC-E in T cell immunity is conserved among humans, rhesus macaques, and cynomolgus macaques.

MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology. Copyright © 2017 by The American Association of Immunologists, Inc.


September 22, 2019

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019

Next-generation approaches to advancing eco-immunogenomic research in critically endangered primates.

High-throughput sequencing platforms are generating massive amounts of genomic data from nonmodel species, and these data sets are valuable resources that can be mined to advance a number of research areas. An example is the growing amount of transcriptome data that allow for examination of gene expression in nonmodel species. Here, we show how publicly available transcriptome data from nonmodel primates can be used to design novel research focused on immunogenomics. We mined transcriptome data from the world’s most endangered group of primates, the lemurs of Madagascar, for sequences corresponding to immunoglobulins. Our results confirmed homology between strepsirrhine and haplorrhine primate immunoglobulins and allowed for high-throughput sequencing of expressed antibodies (Ig-seq) in Coquerel’s sifaka (Propithecus coquereli). Using both Pacific Biosciences RS and Ion Torrent PGM sequencing, we performed Ig-seq on two individuals of Coquerel’s sifaka. We generated over 150 000 sequences of expressed antibodies, allowing for molecular characterization of the antigen-binding region. Our analyses suggest that similar VDJ expression patterns exist across all primates, with sequences closely related to the human VH 3 immunoglobulin family being heavily represented in sifaka antibodies. Moreover, the antigen-binding region of sifaka antibodies exhibited similar amino acid variation with respect to haplorrhine primates. Our study represents the first attempt to characterize sequence diversity of the expressed antibody repertoire in a species of lemur. We anticipate that methods similar to ours will provide the framework for investigating the adaptive immune response in wild populations of other nonmodel organisms and can be used to advance the burgeoning field of eco-immunology. © 2014 John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.