fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilumT.

Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospirillum ferriphilumT) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilumT obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as…

Read More »

Sunday, September 22, 2019

Mutations in genes encoding Penicillin-binding proteins and efflux pumps play a role in ß-lactam resistance in Helicobacter cinaedi.

ß-Lactams are often used to treatHelicobacter cinaediinfections; however, the mechanism underlying ß-lactam resistance is unknown. In this study, we investigated ß-lactam resistance in anH. cinaedistrain, MRY12-0051 (MICs of amoxicillin [AMX] and ceftriaxone [CRO], 32 and 128 µg/ml; obtained from human feces). Based on a comparative whole-genome analysis of MRY12-0051 and the CRO-susceptibleH. cinaedistrain MRY08-1234 (MICs of AMX and CRO, 1 and 4 µg/ml; obtained from human blood), we identified five mutations in genes encoding penicillin-binding proteins (PBPs), including two inpbpA, one inpbp2, and two inftsITransformation and penicillin binding assays indicated that CRO resistance was mainly associated with mutations inpbpA; mutations…

Read More »

Sunday, September 22, 2019

Complete genome sequence and genomic characterization of Lactobacillus acidophilus LA1 (11869BP).

Our body has natural defense systems to protect against potentially harmful microbes, including the physical and chemical barriers of the intestinal epithelium (Corfield et al., 2000). The physical barrier of the intestinal epithelium protects the host against pathogenic microbes (Anderson et al., 1993), and the intestinal mucosa coated with mucus excretes pathogens from the intestinal tract (Corfield et al., 2000).

Read More »

Sunday, September 22, 2019

Basic characterization of natural transformation in a highly transformable Haemophilus parasuis strain SC1401.

Haemophilus parasuis causes Glässer’s disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed…

Read More »

Sunday, September 22, 2019

Characterizing the DNA methyltransferases of Haloferax volcanii via bioinformatics, gene deletion, and SMRT Sequencing.

DNA methyltransferases (MTases), which catalyze the methylation of adenine and cytosine bases in DNA, can occur in bacteria and archaea alongside cognate restriction endonucleases (REases) in restriction-modification (RM) systems or independently as orphan MTases. Although DNA methylation and MTases have been well-characterized in bacteria, research into archaeal MTases has been limited. A previous study examined the genomic DNA methylation patterns (methylome) of the halophilic archaeonHaloferax volcanii, a model archaeal system which can be easily manipulated in laboratory settings, via single-molecule real-time (SMRT) sequencing and deletion of a putative MTase gene (HVO_A0006). In this follow-up study, we deleted other putative MTase…

Read More »

Sunday, September 22, 2019

N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori.

Many bacterial genomes exclusively display an N4-methyl cytosine base (m4C), whose physiological significance is not yet clear. Helicobacter pylori is a carcinogenic bacterium and the leading cause of gastric cancer in humans. Helicobacter pylori strain 26695 harbors a single m4C cytosine methyltransferase, M2.HpyAII which recognizes 5′ TCTTC 3′ sequence and methylates the first cytosine residue. To understand the role of m4C modification, M2.hpyAII deletion strain was constructed. Deletion strain displayed lower adherence to host AGS cells and reduced potential to induce inflammation and apoptosis. M2.hpyAII gene deletion strain exhibited reduced capacity for natural transformation, which was rescued in the complemented…

Read More »

Sunday, September 22, 2019

Loss of stomach, loss of appetite? Sequencing of the ballan wrasse (Labrus bergylta) genome and intestinal transcriptomic profiling illuminate the evolution of loss of stomach function in fish.

The ballan wrasse (Labrus bergylta) belongs to a large teleost family containing more than 600 species showing several unique evolutionary traits such as lack of stomach and hermaphroditism. Agastric fish are found throughout the teleost phylogeny, in quite diverse and unrelated lineages, indicating stomach loss has occurred independently multiple times in the course of evolution. By assembling the ballan wrasse genome and transcriptome we aimed to determine the genetic basis for its digestive system function and appetite regulation. Among other, this knowledge will aid the formulation of aquaculture diets that meet the nutritional needs of agastric species.Long and short read…

Read More »

Sunday, September 22, 2019

Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise.

Interactions between co-existing microorganisms deeply affect the physiology of the involved organisms and, ultimately, the function of the ecosystem as a whole. Copiotrophic Alteromonas are marine gammaproteobacteria that thrive during the late stages of phytoplankton blooms in the marine environment and in laboratory co-cultures with cyanobacteria such as Trichodesmium. The response of this heterotroph to the sometimes rapid and transient changes in nutrient supply when the phototroph crashes is not well understood. Here, we isolated and sequenced the strain Alteromonas macleodii str. Te101 from a laboratory culture of Trichodesmium erythraeum IMS101, yielding a chromosome of 4.63?Mb and a single plasmid…

Read More »

Sunday, September 22, 2019

A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions.

Many bacteria utilize simple DNA sequence repeats as a mechanism to randomly switch genes on and off. This process is called phase variation. Several phase-variable N6-adenine DNA-methyltransferases from Type III restriction-modification systems have been reported in bacterial pathogens. Random switching of DNA methyltransferases changes the global DNA methylation pattern, leading to changes in gene expression. These epigenetic regulatory systems are called phasevarions – phase-variable regulons. The extent of these phase-variable genes in the bacterial kingdom is unknown. Here, we interrogated a database of restriction-modification systems, REBASE, by searching for all simple DNA sequence repeats in mod genes that encode Type III N6-adenine…

Read More »

Sunday, September 22, 2019

CagY-dependent regulation of type IV secretion in Helicobacter pylori is associated with alterations in integrin binding.

Strains of Helicobacter pylori that cause ulcer or gastric cancer typically express a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI). CagY is an ortholog of VirB10 that, unlike other VirB10 orthologs, has a large middle repeat region (MRR) with extensive repetitive sequence motifs, which undergo CD4+ T cell-dependent recombination during infection of mice. Recombination in the CagY MRR reduces T4SS function, diminishes the host inflammatory response, and enables the bacteria to colonize at a higher density. Since CagY is known to bind human a5ß1 integrin, we tested the hypothesis that recombination in the CagY MRR…

Read More »

Sunday, September 22, 2019

Complete genome sequence provides insights into the biodrying-related microbial function of Bacillus thermoamylovorans isolated from sewage sludge biodrying material.

To enable the development of microbial agents and identify suitable candidate used for biodrying, the existence and function of Bacillus thermoamylovorans during sewage sludge biodrying merits investigation. This study isolated a strain of B. thermoamylovorans during sludge biodrying, submitted it for complete genome sequencing and analyzed its potential microbial functions. After biodrying, the moisture content of the biodrying material decreased from 66.33% to 50.18%, and B. thermoamylovorans was the ecologically dominant Bacillus, with the primary annotations associated with amino acid transport and metabolism (9.53%) and carbohydrate transport and metabolism (8.14%). It contains 96 carbohydrate-active- enzyme-encoding gene counts, mainly distributed in…

Read More »

Sunday, September 22, 2019

N6-methyladenine DNA modification in the human genome.

DNA N6-methyladenine (6mA) modification is the most prevalent DNA modification in prokaryotes, but whether it exists in human cells and whether it plays a role in human diseases remain enigmatic. Here, we showed that 6mA is extensively present in the human genome, and we cataloged 881,240 6mA sites accounting for ~0.051% of the total adenines. [G/C]AGG[C/T] was the most significantly associated motif with 6mA modification. 6mA sites were enriched in the coding regions and mark actively transcribed genes in human cells. DNA 6mA and N6-demethyladenine modification in the human genome were mediated by methyltransferase N6AMT1 and demethylase ALKBH1, respectively. The…

Read More »

Sunday, September 22, 2019

Complete genome sequencing and comparative genomic analysis of Helicobacter apodemus isolated from the wild Korean striped field mouse (Apodemus agrarius) for potential pathogenicity

The Helicobacter bacterial genus comprises of spiral-shaped gram-negative bacteria with flagella that colonize the gastro-intestinal (GI) tract of humans and various mammals (Solnick and Schauer, 2001). In particular, Helicobacter pylori was classified as a group 1 carcinogen by the International Agency for Research on Cancer (IARC) in 1994, and has been shown to occur with a high prevalence in humans, although this varies between geographical regions, ethnic groups, and various populations (Kusters et al., 2006; Goh et al., 2011). To date, more than 37 Helicobacter species have been identified in addition to H. pylori (Péré-Védrenne et al., 2017). Furthermore, non-H.…

Read More »

Sunday, September 22, 2019

Comparative genomics of Pseudomonas sp. strain SI-3 associated with macroalga Ulva prolifera, the causative species for green tide in the Yellow Sea.

Algae-bacteria associations occurred widely in marine habitats, however, contributions of bacteria to macroalgal blooming were almost unknown. In this study, a potential endophytic strain SI-3 was isolated from Ulva prolifera, the causative species for the world’s largest green tide in the Yellow Sea, following a strict bleaching treatment to eliminate epiphytes. The genomic sequence of SI-3 was determined in size of 4.8 Mb and SI-3 was found to be mostly closed to Pseudomonas stutzeri. To evaluate the characteristics of SI-3 as a potential endophyte, the genomes of SI-3 and other 20 P. stutzeri strains were compared. We found that SI-3…

Read More »

Sunday, September 22, 2019

The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated adenines.

DNA methylation can serve to control diverse phenomena in eukaryotes and prokaryotes, including gene regulation leading to cell differentiation. In bacteria, DNA methylomes (i.e., methylation state of each base of the whole genome) have been described for several species, but methylome profile variation during the lifecycle has rarely been studied, and only in a few model organisms. Moreover, major phenotypic changes have been reported in several bacterial strains with a deregulated methyltransferase, but the corresponding methylome has rarely been described. Here we report the first methylome description of an entomopathogenic bacterium, Photorhabdus luminescens. Eight motifs displaying a high rate of…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives