Menu
September 22, 2019  |  

HapIso: An accurate method for the haplotype-specific isoforms reconstruction from long single-molecule reads

Sequencing of RNA provides the possibility to study an individual’s transcriptome landscape and determine allelic expression ratios. Single-molecule protocols generate multi-kilobase reads longer than most transcripts allowing sequencing of complete haplotype isoforms. This allows partitioning the reads into two parental haplotypes. While the read length of the single-molecule protocols is long, the relatively high error rate limits the ability to accurately detect the genetic variants and assemble them into the haplotype-specific isoforms. In this paper, we present HapIso (Haplotype-specific Isoform Reconstruction), a method able to tolerate the relatively high error-rate of the single-molecule platform and partition the isoform reads into the parental alleles. Phasing the reads according to the allele of origin allows our method to efficiently distinguish between the read errors and the true biological mutations. HapIso uses a k-means clustering algorithm aiming to group the reads into two meaningful clusters maximizing the similarity of the reads within cluster and minimizing the similarity of the reads from different clusters. Each cluster corresponds to a parental haplotype. We use family pedigree information to evaluate our approach. Experimental validation suggests that HapIso is able to tolerate the relatively high error-rate and accurately partition the reads into the parental alleles of the isoform transcripts. Furthermore, our method is the first method able to reconstruct the haplotype-specific isoforms from long single-molecule reads. The open source Python implementation of HapIso is freely available for download at https://?github.?com/?smangul1/?HapIso/?.


September 22, 2019  |  

Assessing the gene content of the megagenome: sugar pine (Pinus lambertiana).

Sugar pine (Pinus lambertiana Douglas) is within the subgenus Strobus with an estimated genome size of 31 Gbp. Transcriptomic resources are of particular interest in conifers due to the challenges presented in their megagenomes for gene identification. In this study, we present the first comprehensive survey of the P. lambertiana transcriptome through deep sequencing of a variety of tissue types to generate more than 2.5 billion short reads. Third generation, long reads generated through PacBio Iso-Seq has been included for the first time in conifers to combat the challenges associated with de novo transcriptome assembly. A technology comparison is provided here contribute to the otherwise scarce comparisons of 2nd and 3rd generation transcriptome sequencing approaches in plant species. In addition, the transcriptome reference was essential for gene model identification and quality assessment in the parallel project responsible for sequencing and assembly of the entire genome. In this study, the transcriptomic data was also used to address some of the questions surrounding lineage-specific Dicer-like proteins in conifers. These proteins play a role in the control of transposable element proliferation and the related genome expansion in conifers. Copyright © 2016 Author et al.


September 22, 2019  |  

Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content.

Arabica coffee (Coffea arabica) has a small gene pool limiting genetic improvement. Selection for caffeine content within this gene pool would be assisted by identification of the genes controlling this important trait. Sequencing of DNA bulks from 18 genotypes with extreme high- or low-caffeine content from a population of 232 genotypes was used to identify linked polymorphisms. To obtain a reference genome, a whole genome assembly of arabica coffee (variety K7) was achieved by sequencing using short read (Illumina) and long-read (PacBio) technology. Assembly was performed using a range of assembly tools resulting in 76 409 scaffolds with a scaffold N50 of 54 544 bp and a total scaffold length of 1448 Mb. Validation of the genome assembly using different tools showed high completeness of the genome. More than 99% of transcriptome sequences mapped to the C. arabica draft genome, and 89% of BUSCOs were present. The assembled genome annotated using AUGUSTUS yielded 99 829 gene models. Using the draft arabica genome as reference in mapping and variant calling allowed the detection of 1444 nonsynonymous single nucleotide polymorphisms (SNPs) associated with caffeine content. Based on Kyoto Encyclopaedia of Genes and Genomes pathway-based analysis, 65 caffeine-associated SNPs were discovered, among which 11 SNPs were associated with genes encoding enzymes involved in the conversion of substrates, which participate in the caffeine biosynthesis pathways. This analysis demonstrated the complex genetic control of this key trait in coffee.© 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


September 22, 2019  |  

Avian transcriptomics: opportunities and challenges

Recent developments in next-generation sequencing technologies have greatly facilitated the study of whole transcriptomes in model and non-model species. Studying the transcriptome and how it changes across a variety of biological conditions has had major implications for our understanding of how the genome is regulated in different contexts, and how to interpret adaptations and the phenotype of an organism. The aim of this review is to highlight the potential of these new technologies for the study of avian transcriptomics, and to summarise how transcriptomics has been applied in ornithology. A total of 81 peer-reviewed scientific articles that used transcriptomics to answer questions within a broad range of study areas in birds are used as examples throughout the review. We further provide a quick guide to highlight the most important points which need to be take into account when planning a transcriptomic study in birds, and discuss how researchers with little background in molecular biology can avoid potential pitfalls. Suggestions for further reading are supplied throughout. We also discuss possible future developments in the technology platforms used for ribonucleic acid sequencing. By summarising how these novel technologies can be used to answer questions that have long been asked by ornithologists, we hope to bridge the gap between traditional ornithology and genomics, and to stimulate more interdisciplinary research.


September 22, 2019  |  

100K Pathogen Genome Project.

The 100K Pathogen Genome Project is producing draft and closed genome sequences from diverse pathogens. This project expanded globally to include a snapshot of global bacterial genome diversity. The genomes form a sequence database that has a variety of uses from systematics to public health. Copyright © 2017 Weimer.


September 22, 2019  |  

Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation.

Species-specific, new, or “orphan” genes account for 10%-30% of eukaryotic genomes. Although initially considered to have limited function, an increasing number of orphan genes have been shown to provide important phenotypic innovation. How new genes acquire regulatory sequences for proper temporal and spatial expression is unknown. Orphan gene regulation may rely in part on origination in open chromatin adjacent to preexisting promoters, although this has not yet been assessed by genome-wide analysis of chromatin states. Here, we combine taxon-rich nematode phylogenies with Iso-Seq, RNA-seq, ChIP-seq, and ATAC-seq to identify the gene structure and epigenetic signature of orphan genes in the satellite model nematode Pristionchus pacificus Consistent with previous findings, we find young genes are shorter, contain fewer exons, and are on average less strongly expressed than older genes. However, the subset of orphan genes that are expressed exhibit distinct chromatin states from similarly expressed conserved genes. Orphan gene transcription is determined by a lack of repressive histone modifications, confirming long-held hypotheses that open chromatin is important for new gene formation. Yet orphan gene start sites more closely resemble enhancers defined by H3K4me1, H3K27ac, and ATAC-seq peaks, in contrast to conserved genes that exhibit traditional promoters defined by H3K4me3 and H3K27ac. Although the majority of orphan genes are located on chromosome arms that contain high recombination rates and repressive histone marks, strongly expressed orphan genes are more randomly distributed. Our results support a model of new gene origination by rare integration into open chromatin near enhancers.© 2018 Werner et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Somatic APP gene recombination in Alzheimer’s disease and normal neurons.

The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer’s disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant ‘genomic cDNAs’ (gencDNAs). gencDNAs lacked introns and ranged from full-length cDNA copies of expressed, brain-specific RNA splice variants to myriad smaller forms that contained intra-exonic junctions, insertions, deletions, and/or single nucleotide variations. DNA in situ hybridization identified gencDNAs within single neurons that were distinct from wild-type loci and absent from non-neuronal cells. Mechanistic studies supported neuronal ‘retro-insertion’ of RNA to produce gencDNAs; this process involved transcription, DNA breaks, reverse transcriptase activity, and age. Neurons from individuals with sporadic Alzheimer’s disease showed increased gencDNA diversity, including eleven mutations known to be associated with familial Alzheimer’s disease that were absent from healthy neurons. Neuronal gene recombination may allow ‘recording’ of neural activity for selective ‘playback’ of preferred gene variants whose expression bypasses splicing; this has implications for cellular diversity, learning and memory, plasticity, and diseases of the human brain.


September 22, 2019  |  

Ecological genomics of tropical trees: how local population size and allelic diversity of resistance genes relate to immune responses, cosusceptibility to pathogens, and negative density dependence

In tropical forests, rarer species show increased sensitivity to species-specific soil pathogens and more negative effects of conspecific density on seedling survival (NDD). These patterns suggest a connection between ecology and immunity, perhaps because small population size disproportionately reduces genetic diversity of hyperdiverse loci such as immunity genes. In an experiment examining seedling roots from six species in one tropical tree community, we found that smaller populations have reduced amino acid diversity in pathogen resistance (R) genes but not the transcriptome in general. Normalized R gene amino acid diversity varied with local abundance and prior measures of differences in sensitivity to conspecific soil and NDD. After exposure to live soil, species with lower R gene diversity had reduced defence gene induction, more cosusceptibility of maternal cohorts to colonization by potentially pathogenic fungi, reduced root growth arrest (an R gene-mediated response) and their root-associated fungi showed lower induction of self-defence (antioxidants). Local abundance was not related to the ability to induce immune responses when pathogen recognition was bypassed by application of salicylic acid, a phytohormone that activates defence responses downstream of R gene signalling. These initial results support the hypothesis that smaller local tree populations have reduced R gene diversity and recognition-dependent immune responses, along with greater cosusceptibility to species-specific pathogens that may facilitate disease transmission and NDD. Locally rare species may be less able to increase their equilibrium abundance without genetic boosts to defence via immigration of novel R gene alleles from a larger and more diverse regional population.


September 22, 2019  |  

Interpreting microbial biosynthesis in the genomic age: Biological and practical considerations.

Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC.


September 22, 2019  |  

Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome.

Shotgun metagenomics has become an important tool for investigating the ecology of microorganisms. Underlying these investigations is the assumption that metagenome sequence data accurately estimates the census of microbial populations. Multiple displacement amplification (MDA) of microbial community DNA is often used in cases where it is difficult to obtain enough DNA for sequencing; however, MDA can result in amplification biases that may impact subsequent estimates of population census from metagenome data. Some have posited that pooling replicate MDA reactions negates these biases and restores the accuracy of population analyses. This assumption has not been empirically tested.Using mock viral communities, we examined the influence of pooling on population-scale analyses. In pooled and single reaction MDA treatments, sequence coverage of viral populations was highly variable and coverage patterns across viral genomes were nearly identical, indicating that initial priming biases were reproducible and that pooling did not alleviate biases. In contrast, control unamplified sequence libraries showed relatively even coverage across phage genomes.MDA should be avoided for metagenomic investigations that require quantitative estimates of microbial taxa and gene functional groups. While MDA is an indispensable technique in applications such as single-cell genomics, amplification biases cannot be overcome by combining replicate MDA reactions. Alternative library preparation techniques should be utilized for quantitative microbial ecology studies utilizing metagenomic sequencing approaches.


September 22, 2019  |  

Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells.

Full-length RNA sequencing (RNA-Seq) has been applied to bulk tissue, cell lines and sorted cells to characterize transcriptomes, but applying this technology to single cells has proven to be difficult, with less than ten single-cell transcriptomes having been analyzed thus far. Although single splicing events have been described for =200 single cells with statistical confidence, full-length mRNA analyses for hundreds of cells have not been reported. Single-cell short-read 3′ sequencing enables the identification of cellular subtypes, but full-length mRNA isoforms for these cell types cannot be profiled. We developed a method that starts with bulk tissue and identifies single-cell types and their full-length RNA isoforms without fluorescence-activated cell sorting. Using single-cell isoform RNA-Seq (ScISOr-Seq), we identified RNA isoforms in neurons, astrocytes, microglia, and cell subtypes such as Purkinje and Granule cells, and cell-type-specific combination patterns of distant splice sites. We used ScISOr-Seq to improve genome annotation in mouse Gencode version 10 by determining the cell-type-specific expression of 18,173 known and 16,872 novel isoforms.


September 22, 2019  |  

Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study.

High-throughput RNA sequencing (RNA-seq) greatly expands the potential for genomics discoveries, but the wide variety of platforms, protocols and performance capabilitites has created the need for comprehensive reference data. Here we describe the Association of Biomolecular Resource Facilities next-generation sequencing (ABRF-NGS) study on RNA-seq. We carried out replicate experiments across 15 laboratory sites using reference RNA standards to test four protocols (poly-A-selected, ribo-depleted, size-selected and degraded) on five sequencing platforms (Illumina HiSeq, Life Technologies PGM and Proton, Pacific Biosciences RS and Roche 454). The results show high intraplatform (Spearman rank R > 0.86) and inter-platform (R > 0.83) concordance for expression measures across the deep-count platforms, but highly variable efficiency and cost for splice junction and variant detection between all platforms. For intact RNA, gene expression profiles from rRNA-depletion and poly-A enrichment are similar. In addition, rRNA depletion enables effective analysis of degraded RNA samples. This study provides a broad foundation for cross-platform standardization, evaluation and improvement of RNA-seq.


September 22, 2019  |  

The Florida manatee (Trichechus manatus latirostris) immunoglobulin heavy chain suggests the importance of clan III variable segments in repertoire diversity.

Manatees are a vulnerable, charismatic sentinel species from the evolutionarily divergent Afrotheria. Manatee health and resistance to infectious disease is of great concern to conservation groups, but little is known about their immune system. To develop manatee-specific tools for monitoring health, we first must have a general knowledge of how the immunoglobulin heavy (IgH) chain locus is organized and transcriptionally expressed. Using the genomic scaffolds of the Florida manatee (Trichechus manatus latirostris), we characterized the potential IgH segmental diversity and constant region isotypic diversity and performed the first Afrotherian repertoire analysis. The Florida manatee has low V(D)J combinatorial diversity (3744 potential combinations) and few constant region isotypes. They also lack clan III V segments, which may have caused reduced VH segment numbers. However, we found productive somatic hypermutation concentrated in the complementarity determining regions. In conclusion, manatees have limited IGHV clan and combinatorial diversity. This suggests that clan III V segments are essential for maintaining IgH locus diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Metagenomic approaches to assess bacteriophages in various environmental niches.

Bacteriophages are ubiquitous and numerous parasites of bacteria and play a critical evolutionary role in virtually every ecosystem, yet our understanding of the extent of the diversity and role of phages remains inadequate for many ecological niches, particularly in cases in which the host is unculturable. During the past 15 years, the emergence of the field of viral metagenomics has drastically enhanced our ability to analyse the so-called viral ‘dark matter’ of the biosphere. Here, we review the evolution of viral metagenomic methodologies, as well as providing an overview of some of the most significant applications and findings in this field of research.


September 22, 2019  |  

Transcriptome-wide survey of pseudorabies virus using next- and third-generation sequencing platforms.

Pseudorabies virus (PRV) is an alphaherpesvirus of swine. PRV has a large double-stranded DNA genome and, as the latest investigations have revealed, a very complex transcriptome. Here, we present a large RNA-Seq dataset, derived from both short- and long-read sequencing. The dataset contains 1.3 million 100?bp paired-end reads that were obtained from the Illumina random-primed libraries, as well as 10 million 50?bp single-end reads generated by the Illumina polyA-seq. The Pacific Biosciences RSII non-amplified method yielded 57,021 reads of inserts (ROIs) aligned to the viral genome, the amplified method resulted in 158,396 PRV-specific ROIs, while we obtained 12,555 ROIs using the Sequel platform. The Oxford Nanopore’s MinION device generated 44,006 reads using their regular cDNA-sequencing method, whereas 29,832 and 120,394 reads were produced by using the direct RNA-sequencing and the Cap-selection protocols, respectively. The raw reads were aligned to the PRV reference genome (KJ717942.1). Our provided dataset can be used to compare different sequencing approaches, library preparation methods, as well as for validation and testing bioinformatic pipelines.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.