Menu
September 22, 2019  |  

A workflow for studying specialized metabolism in nonmodel eukaryotic organisms

Eukaryotes contain a diverse tapestry of specialized metabolites, many of which are of significant pharmaceutical and industrial importance to humans. Nevertheless, exploration of specialized metabolic pathways underlying specific chemical traits in nonmodel eukaryotic organisms has been technically challenging and historically lagged behind that of the bacterial systems. Recent advances in genomics, metabolomics, phylogenomics, and synthetic biology now enable a new workflow for interrogating unknown specialized metabolic systems in nonmodel eukaryotic hosts with greater efficiency and mechanistic depth. This chapter delineates such workflow by providing a collection of state-of-the-art approaches and tools, ranging from multiomics-guided candidate gene identification to in vitro and in vivo functional and structural characterization of specialized metabolic enzymes. As already demonstrated by several recent studies, this new workflow opens up a gateway into the largely untapped world of natural product biochemistry in eukaryotes. © 2016 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Exploiting single-molecule transcript sequencing for eukaryotic gene prediction.

We develop a method to predict and validate gene models using PacBio single-molecule, real-time (SMRT) cDNA reads. Ninety-eight percent of full-insert SMRT reads span complete open reading frames. Gene model validation using SMRT reads is developed as automated process. Optimized training and prediction settings and mRNA-seq noise reduction of assisting Illumina reads results in increased gene prediction sensitivity and precision. Additionally, we present an improved gene set for sugar beet (Beta vulgaris) and the first genome-wide gene set for spinach (Spinacia oleracea). The workflow and guidelines are a valuable resource to obtain comprehensive gene sets for newly sequenced genomes of non-model eukaryotes.


September 22, 2019  |  

Single-Molecule Long-Read Sequencing of Zanthoxylum bungeanum Maxim. Transcriptome: Identification of Aroma-Related Genes

Zanthoxylum bungeanum Maxim. is an economically important tree species that is resistant to drought and infertility, and has potential medicinal and edible value. However, comprehensive genomic data are not yet available for this species, limiting its potential utility for medicinal use, breeding programs, and cultivation. Transcriptome sequencing provides an effective approach to remedying this shortcoming. Herein, single-molecule long-read sequencing and next-generation sequencingapproacheswereusedinparalleltoobtaintranscriptisoformstructureandgenefunctional informationinZ.bungeanum. Intotal, 282,101readsofinserts(ROIs)wereidentified, including134,074 full-length non-chimeric reads, among which 65,711 open reading frames (ORFs), 50,135 simple sequence repeats (SSRs), and 1492 long non-coding RNAs (lncRNAs) were detected. Functional annotation revealed metabolic pathways related to aroma components and color characteristics in Z. bungeanum. Unexpectedly, 30 transcripts were annotated as genes involved in regulating the pathogenesis of breast and colorectal cancers. This work provides a comprehensive transcriptome resource for Z. bungeanum, and lays a foundation for the further investigation and utilization of Zanthoxylum resources.


September 22, 2019  |  

Full-length transcriptome survey and expression analysis of Cassia obtusifolia to discover putative genes related to aurantio-obtusin biosynthesis, seed formation and development, and stress response.

The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study, fifteen cDNA libraries, which were constructed from the seed, root, stem, leaf, and flower (three repetitions with each organ) of C. obtusifolia, were sequenced using hybrid approach combining single-molecule real-time (SMRT) and NGS platform. More than 4,315,774 long reads with 9.66 Gb sequencing data and 361,427,021 short reads with 108.13 Gb sequencing data were generated by SMRT and NGS platform, respectively. 67,222 consensus isoforms were clustered from the reads and 81.73% (61,016) of which were longer than 1000 bp. Furthermore, the 67,222 consensus isoforms represented 58,106 nonredundant transcripts, 98.25% (57,092) of which were annotated and 25,573 of which were assigned to specific metabolic pathways by KEGG. CoDXS and CoDXR genes were directly used for functional characterization to validate the accuracy of sequences obtained from transcriptome. A total of 658 seed-specific transcripts indicated their special roles in physiological processes in seed. Analysis of transcripts which were involved in the early stage of anthraquinone biosynthesis suggested that the aurantio-obtusin in C. obtusifolia was mainly generated from isochorismate and Mevalonate/methylerythritol phosphate (MVA/MEP) pathway, and three reactions catalyzed by Menaquinone-specific isochorismate synthase (ICS), 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate (IPPS) might be the limited steps. Several seed-specific CYPs, SAM-dependent methyltransferase, and UDP-glycosyltransferase (UDPG) supplied promising candidate genes in the late stage of anthraquinone biosynthesis. In addition, four seed-specific transcriptional factors including three MYB Transcription Factor (MYB) and one MADS-box Transcription Factor (MADS) transcriptional factors) and alternative splicing might be involved with seed formation and development. Meanwhile, most members of Hsp20 genes showed high expression level in seed and flower; seven of which might have chaperon activities under various abiotic stresses. Finally, the expressional patterns of genes with particular interests showed similar trends in both transcriptome assay and qRT-PCR. In conclusion, this is the first full-length transcriptome sequencing reported in Caesalpiniaceae family, and thus providing a more complete insight into aurantio-obtusin biosynthesis, seed formation and development, and stress response as well in C. obtusifolia.


September 22, 2019  |  

CRISPR/Cas9 deletions in a conserved exon of Distal-less generates gains and losses in a recently acquired morphological novelty in flies.

Distal-less has been repeatedly co-opted for the development of many novel traits. Here, we document its curious role in the development of a novel abdominal appendage (“sternite brushes”) in sepsid flies. CRISPR/Cas9 deletions in the homeodomain result in losses of sternite brushes, demonstrating that Distal-less is necessary for their development. However, deletions in the upstream coding exon (Exon 2) produce losses or gains of brushes. A dissection of Exon 2 reveals that the likely mechanism for gains involves a deletion in an exon-splicing enhancer site that leads to exon skipping. Such contradictory phenotypes are also observed in butterflies, suggesting that mutations in the conserved upstream regions have the potential to generate phenotypic variability in insects that diverged 300 million years ago. Our results demonstrate the importance of Distal-less for the development of a novel abdominal appendage in insects and highlight how site-specific mutations in the same exon can produce contradictory phenotypes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Single Molecule Sequencing: new outlooks for solving genome assembly and transcripts identification challenges

In this review, we introduce a novel sequencing technology, named Single Molecule Real Time sequencing. Also called Single Molecule Sequencing, as it do not requires any amplification, this new technology is able to pro- duce much longer reads than previous NGS technologies such as Illumina. This read size improvements, which can reach 150 fold, will solve many challenges caused by the actual NGS technologies. Short NGS reads, reach- ing a maximum size of 300 bp, make it hard to reconstitute a whole genome and are always leading to fragmented genome assembly. It is also difficult to correctly infer transcript quantification and identification when there is a high isoforms diversity. Despite their higher error rate, long reads have shown very promising result concerning these actual issues. We show that longer reads can produce less fragmented assembly, with a better quality, but also sequence from start to end mRNA, making it much more easier to infer correct transcript quantification, and even allow new intron structure and so new isoforms discovery.


September 22, 2019  |  

Introduction to isoform sequencing using Pacific Biosciences technology (Iso-Seq)

Alternative RNA splicing is a known phenomenon, but we still do not have a complete catalog of isoforms that explain variability in the human transcriptome. We have made significant progress in developing methods to study variability of the transcriptome, but we are far away of having a complete picture of the transcriptome. The initial methods to study gene expression were based on cloning of cDNAs and Sanger sequencing. The strategy was labor-intensive and expensive. With the development of microarrays, different methods based on exon arrays and tiling arrays provided valuable information about RNA expression. However, the microarray presented significant limitations. Most of the limitations became apparent by 2005, but it was not until 2008 that an alternative method to study the transcriptome was developed. RNA Sequencing using next-generation sequencing (RNA-Seq) quickly became the technology of choice for gene expression profiling. Recently, the precision and sensitivity of RNA-Seq have come into question, especially for transcriptome reconstruction. This chapter will describe a relatively new method, “Isoform Sequencing (Iso-Seq). Iso-Seq was developed by Pacific Biosciences (PacBio), and it is capable of identifying new isoforms with extraordinary precision due to its long-read technology. The technique to create libraries is straightforward, and the PacBio RS II instrument generates the information in hours. The bioinformatics analysis is performed using the freely available SMRT® Portal software. The SMRT Portal is easy to use and capable of performing all the steps necessary to analyze the raw data and to generate high-quality full-length isoforms. For the universal acceptance of the Iso-Seq method, the capacity of the SMRT Cells needs to improve at least 10- to 100-fold to make the system affordable and attractive to users.


September 22, 2019  |  

A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome.

The initiating nucleotide found at the 5′ end of primary transcripts has a distinctive triphosphorylated end that distinguishes these transcripts from all other RNA species. Recognizing this distinction is key to deconvoluting the primary transcriptome from the plethora of processed transcripts that confound analysis of the transcriptome. The currently available methods do not use targeted enrichment for the 5’end of primary transcripts, but rather attempt to deplete non-targeted RNA.We developed a method, Cappable-seq, for directly enriching for the 5′ end of primary transcripts and enabling determination of transcription start sites at single base resolution. This is achieved by enzymatically modifying the 5′ triphosphorylated end of RNA with a selectable tag. We first applied Cappable-seq to E. coli, achieving up to 50 fold enrichment of primary transcripts and identifying an unprecedented 16539 transcription start sites (TSS) genome-wide at single base resolution. We also applied Cappable-seq to a mouse cecum sample and identified TSS in a microbiome.Cappable-seq allows for the first time the capture of the 5′ end of primary transcripts. This enables a unique robust TSS determination in bacteria and microbiomes.  In addition to and beyond TSS determination, Cappable-seq depletes ribosomal RNA and reduces the complexity of the transcriptome to a single quantifiable tag per transcript enabling digital profiling of gene expression in any microbiome.


September 22, 2019  |  

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

Next generation multilocus sequence typing (NGMLST) and the analytical software program MLSTEZ enable efficient, cost-effective, high-throughput, multilocus sequencing typing.

Multilocus sequence typing (MLST) has become the preferred method for genotyping many biological species, and it is especially useful for analyzing haploid eukaryotes. MLST is rigorous, reproducible, and informative, and MLST genotyping has been shown to identify major phylogenetic clades, molecular groups, or subpopulations of a species, as well as individual strains or clones. MLST molecular types often correlate with important phenotypes. Conventional MLST involves the extraction of genomic DNA and the amplification by PCR of several conserved, unlinked gene sequences from a sample of isolates of the taxon under investigation. In some cases, as few as three loci are sufficient to yield definitive results. The amplicons are sequenced, aligned, and compared by phylogenetic methods to distinguish statistically significant differences among individuals and clades. Although MLST is simpler, faster, and less expensive than whole genome sequencing, it is more costly and time-consuming than less reliable genotyping methods (e.g. amplified fragment length polymorphisms). Here, we describe a new MLST method that uses next-generation sequencing, a multiplexing protocol, and appropriate analytical software to provide accurate, rapid, and economical MLST genotyping of 96 or more isolates in single assay. We demonstrate this methodology by genotyping isolates of the well-characterized, human pathogenic yeast Cryptococcus neoformans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Long-read based assembly and annotation of a Drosophila simulans genome

Long-read sequencing technologies enable high-quality, contiguous genome assemblies. Here we used SMRT sequencing to assemble the genome of a Drosophila simulans strain originating from Madagascar, the ancestral range of the species. We generated 8 Gb of raw data (~50x coverage) with a mean read length of 6,410 bp, a NR50 of 9,125 bp and the longest subread at 49 kb. We benchmarked six different assemblers and merged the best two assemblies from Canu and Falcon. Our final assembly was 127.41 Mb with a N50 of 5.38 Mb and 305 contigs. We anchored more than 4 Mb of novel sequence to the major chromosome arms, and significantly improved the assembly of peri-centromeric and telomeric regions. Finally, we performed full-length transcript sequencing and used this data in conjunction with short-read RNAseq data to annotate 13,422 genes in the genome, improving the annotation in regions with complex, nested gene structures.


September 22, 2019  |  

A single-molecule long-read survey of the human transcriptome.

Global RNA studies have become central to understanding biological processes, but methods such as microarrays and short-read sequencing are unable to describe an entire RNA molecule from 5′ to 3′ end. Here we use single-molecule long-read sequencing technology from Pacific Biosciences to sequence the polyadenylated RNA complement of a pooled set of 20 human organs and tissues without the need for fragmentation or amplification. We show that full-length RNA molecules of up to 1.5 kb can readily be monitored with little sequence loss at the 5′ ends. For longer RNA molecules more 5′ nucleotides are missing, but complete intron structures are often preserved. In total, we identify ~14,000 spliced GENCODE genes. High-confidence mappings are consistent with GENCODE annotations, but >10% of the alignments represent intron structures that were not previously annotated. As a group, transcripts mapping to unannotated regions have features of long, noncoding RNAs. Our results show the feasibility of deep sequencing full-length RNA from complex eukaryotic transcriptomes on a single-molecule level.


September 22, 2019  |  

Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings.

In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


September 22, 2019  |  

Next generation sequencing technology: Advances and applications.

Impressive progress has been made in the field of Next Generation Sequencing (NGS). Through advancements in the fields of molecular biology and technical engineering, parallelization of the sequencing reaction has profoundly increased the total number of produced sequence reads per run. Current sequencing platforms allow for a previously unprecedented view into complex mixtures of RNA and DNA samples. NGS is currently evolving into a molecular microscope finding its way into virtually every fields of biomedical research. In this chapter we review the technical background of the different commercially available NGS platforms with respect to template generation and the sequencing reaction and take a small step towards what the upcoming NGS technologies will bring. We close with an overview of different implementations of NGS into biomedical research. This article is part of a Special Issue entitled: From Genome to Function. Copyright © 2014 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Multi-platform analysis reveals a complex transcriptome architecture of a circovirus.

In this study, we used Pacific Biosciences RS II long-read and Illumina HiScanSQ short-read sequencing technologies for the characterization of porcine circovirus type 1 (PCV-1) transcripts. Our aim was to identify novel RNA molecules and transcript isoforms, as well as to determine the exact 5′- and 3′-end sequences of previously described transcripts with single base-pair accuracy. We discovered a novel 3′-UTR length isoform of the Cap transcript, and a non-spliced Cap transcript variant. Additionally, our analysis has revealed a 3′-UTR isoform of Rep and two 5′-UTR isoforms of Rep’ transcripts, and a novel splice variant of the longer Rep’ transcript. We also explored two novel long transcripts, one with a previously identified splice site, and a formerly undetected mRNA of ORF3. Altogether, our methods have identified nine novel RNA molecules, doubling the size of PCV-1 transcriptome that had been known before. Additionally, our investigations revealed an intricate pattern of transcript overlapping, which might produce transcriptional interference between the transcriptional machineries of adjacent genes, and thereby may potentially play a role in the regulation of gene expression in circoviruses. Copyright © 2017 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.