Menu
July 7, 2019

Efficient transgenesis and annotated genome sequence of the regenerative flatworm model Macrostomum lignano.

Regeneration-capable flatworms are informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. However, the lack of transgenesis methods considerably hampers their wider use. Here we report development of a transgenesis method for Macrostomum lignano, a basal flatworm with excellent regeneration capacity. We demonstrate that microinjection of DNA constructs into fertilized one-cell stage eggs, followed by a low dose of irradiation, frequently results in random integration of the transgene in the genome and its stable transmission through the germline. To facilitate selection of promoter regions for transgenic reporters, we assembled and annotated the M. lignano genome, including genome-wide mapping of transcription start regions, and show its utility by generating multiple stable transgenic lines expressing fluorescent proteins under several tissue-specific promoters. The reported transgenesis method and annotated genome sequence will permit sophisticated genetic studies on stem cells and regeneration using M. lignano as a model organism.


July 7, 2019

Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs.

Leishmania parasites are the causative of leishmaniasis, a group of potentially fatal human diseases. Control strategies for leishmaniasis can be enhanced by genome based investigations. The publication in 2005 of the Leishmania major genome sequence, and two years later the genomes for the species Leishmania braziliensis and Leishmania infantum were major milestones. Since then, the L. infantum genome, although highly fragmented and incomplete, has been used widely as the reference genome to address whole transcriptomics and proteomics studies. Here, we report the sequencing of the L. infantum genome by two NGS methodologies and, as a result, the complete genome assembly on 36 contigs (chromosomes). Regarding the present L. infantum genome-draft, 495 new genes have been annotated, a hundred have been corrected and 75 previous annotated genes have been discontinued. These changes are not only the result of an increase in the genome size, but a significant contribution derives from the existence of a large number of incorrectly assembled regions in current chromosomal scaffolds. Furthermore, an improved assembly of tandemly repeated genes has been obtained. All these analyses support that the de novo assembled L. infantum genome represents a robust assembly and should replace the currently available in the databases.


July 7, 2019

Chromosome evolution in the free-living flatworms: first evidence of intrachromosomal rearrangements in karyotype evolution of Macrostomum lignano (Platyhelminthes, Macrostomida).

The free-living flatworm Macrostomum lignano is a hidden tetraploid. Its genome was formed by a recent whole genome duplication followed by chromosome fusions. Its karyotype (2n = 8) consists of a pair of large chromosomes (MLI1), which contain regions of all other chromosomes, and three pairs of small metacentric chromosomes. Comparison of MLI1 with metacentrics was performed by painting with microdissected DNA probes and fluorescent in situ hybridization of unique DNA fragments. Regions of MLI1 homologous to small metacentrics appeared to be contiguous. Besides the loss of DNA repeat clusters (pericentromeric and telomeric repeats and the 5S rDNA cluster) from MLI1, the difference between small metacentrics MLI2 and MLI4 and regions homologous to them in MLI1 were revealed. Abnormal karyotypes found in the inbred DV1/10 subline were analyzed, and structurally rearranged chromosomes were described with the painting technique, suggesting the mechanism of their origin. The revealed chromosomal rearrangements generate additional diversity, opening the way toward massive loss of duplicated genes from a duplicated genome. Our findings suggest that the karyotype of M. lignano is in the early stage of genome diploidization after whole genome duplication, and further studies on M. lignano and closely related species can address many questions about karyotype evolution in animals.


July 7, 2019

Draft sequencing of the heterozygous diploid genome of Satsuma (Citrus unshiu Marc.) using a hybrid assembly approach.

Satsuma (Citrus unshiu Marc.) is one of the most abundantly produced mandarin varieties of citrus, known for its seedless fruit production and as a breeding parent of citrus. De novo assembly of the heterozygous diploid genome of Satsuma (“Miyagawa Wase”) was conducted by a hybrid assembly approach using short-read sequences, three mate-pair libraries, and a long-read sequence of PacBio by the PLATANUS assembler. The assembled sequence, with a total size of 359.7 Mb at the N50 length of 386,404 bp, consisted of 20,876 scaffolds. Pseudomolecules of Satsuma constructed by aligning the scaffolds to three genetic maps showed genome-wide synteny to the genomes of Clementine, pummelo, and sweet orange. Gene prediction by modeling with MAKER-P proposed 29,024 genes and 37,970 mRNA; additionally, gene prediction analysis found candidates for novel genes in several biosynthesis pathways for gibberellin and violaxanthin catabolism. BUSCO scores for the assembled scaffold and predicted transcripts, and another analysis by BAC end sequence mapping indicated the assembled genome consistency was close to those of the haploid Clementine, pummel, and sweet orange genomes. The number of repeat elements and long terminal repeat retrotransposon were comparable to those of the seven citrus genomes; this suggested no significant failure in the assembly at the repeat region. A resequencing application using the assembled sequence confirmed that both kunenbo-A and Satsuma are offsprings of Kishu, and Satsuma is a back-crossed offspring of Kishu. These results illustrated the performance of the hybrid assembly approach and its ability to construct an accurate heterozygous diploid genome.


July 7, 2019

Observations on bipolar disjunctions of moonwort ferns (Botrychium, Ophioglossaceae).

Peter Raven, in 1963, included two fern taxa of the genus Botrychium in his list of plant species exhibiting American amphitropical bipolar disjunctions. He attributed the southern hemisphere occurrences to post-Pleistocene long-distance dispersal from counterparts in the northern hemisphere, probably assisted by annual bird migrations between the disjunct areas. Using genetic evidence gathered through worldwide analyses of phylogenetic relationship in Botrychium, we now review and reconsider Raven’s conclusions. Genetic similarities indicate that South American Botrychium dusenii is an allotetraploid taxon closely related to B. spathulatum, a North American endemic, and that B. lunaria in New Zealand possesses a genotype identical to that of a taxon in North America derived through introgressive hybridization between B. lunaria and an endemic North American species, B. neolunaria. Both North American counterparts exhibit Raven’s characteristics of bipolar disjuncts in their occurrence in mountain and coastal meadows, copious production of small propagules (spores in Botrychium), occurrence in habitats frequented by transpolar bird migrants, and ability to found new colonies through inbreeding. We discuss these characteristics in Botrychium and relative to other ferns and suggest further studies on Botrychium and related taxa to address questions of time, number, and mode of bipolar dispersals.© 2017 Botanical Society of America.


July 7, 2019

Complete genome sequence of Bacillus vallismortis NBIF-001, a novel strain from Shangri-La, China, that has high activity against Fusarium oxysporum.

Bacillus vallismortis NBIF-001, a Gram-positive bacterium, was isolated from soil in Shangri-La, China. Here, we provide the complete genome sequence of this bacterium, which has a 3,929,787-bp-long genome, including 4,030 protein-coding genes and 195 RNA genes. This strain possesses a number of genes encoding virulence factors of pathogens. Copyright © 2017 Liu et al.


July 7, 2019

Complete genome sequence of Bacillus velezensis L-1, which has antagonistic activity against pear diseases.

Bacillus velezensis L-1 is an effective biocontrol agent against pear diseases. Here, we report the complete genome sequence of B. velezensis L-1 in which clusters related to the biosynthesis of secondary metabolites were predicted. This genome provides insights into the possible biocontrol mechanisms and furthers application of this specific bacterium. Copyright © 2017 Sun et al.


July 7, 2019

Phenotypic and genotypic features of a Salmonella Heidelberg strain isolated in broilers in Brazil and their possible association to antibiotics and short-chain organic acids resistance and susceptibility.

Salmonella enterica serovar Heidelberg is a human pathogen also found in broilers. A strain (UFPR1) has been associated with field reports of resistance to short-chain organic acids (SCOA) in broilers in the South of Brazil, but was susceptible to aBacillus subtilis-based probiotic added in feed in a related study. This work aimed to (i) report clinical symptoms caused by SH UFPR1 in broilers, (ii) study its susceptibility to some antibioticsin vitro, and (iii) SCOAin vivo; and (iv) relate these phenotypic observations with its genome characteristics. Twoin vivotrials used 1-day-old chicks housed for 21?days in 8 sterilized isolated negative pressure rooms with 4 battery cages of 12 birds each. Birds were challenged or not with 107?CFU/bird of SH UFPR1 orally and exposed or not to SCOA in a 2?×?2 factorial design. Zootechnical parameters were unaffected (P?>?0.05), no clinical signs were observed, and few cecal and hepatic histologic and immune-related alterations were seen, in birds challenged with SH. Formic and propionic acids added together in drinking water, fumaric and benzoic acid in feed (Trial 1), and coated calcium butyrate in feed (Trial 2) did not reduce the SH isolation frequencies seen in cecum and liver in broilers after SH challenge (P?>?0.05). SH UFPR1 was susceptible to amikacin, amoxicillin?+?clavulanate, ceftiofur, cephalexin, doxycycline and oxytetracycline; and mildly susceptible to ampicillin?+?sulbactam, cephalothin, ciprofloxacin, enrofloxacin, and gentamycin in anin vitrominimum inhibitory concentration model using Mueller-Hinton agar. The whole genome of SH UFPR1 was sequenced and consisted of a circular chromosome, spanning 4,760,321?bp with 52.18% of GC-content encoding 84 tRNA, 22 rRNA, and 4,427 protein-coding genes. The comparison between SH UFPR1 genome and a multidrug-resistant SL476 strain revealed 11 missing genomic fragments and 5 insertions related tobgt, bgr, andrpoSgenes. The deleted genes codify proteins associated with cell cycle regulation, virulence, drug resistance, cellular adhesion, and salt efflux which collectively reveal key aspects of the evolution and adaptation of SH strains such as organic acids resistance and antibiotic sensitivity and provide information relevant to the control of SH in poultry.


July 7, 2019

Genomic analysis of a pathogenic bacterium, Paeniclostridium sordellii CBA7122 containing the highest number of rRNA operons, isolated from a human stool sample.

Paeniclostridium sordellii was first isolated by Alfredo Sordelli in 1922 under the proposed name Bacillus oedematis, and was then renamed Bacillus sordellii in 1927 (Hall and Scott, 1927). Two years later, it was classified as Clostridium sordellii (Hall et al., 1929). Recently, this bacterium was reclassified as a species of the genus Paeniclostridium, named P. sordellii comb. nov. (Sasi Jyothsna et al., 2016). P. sordellii is an anaerobic, Gram-stain-positive, spore-forming rod bacterium with flagella. Most strains are non-pathogenic, but some strains have been associated with severe infections of humans and animals. In humans, P. sordellii is mainly associated with trauma, toxic shock, soft tissue skin infections, and gynecologic infections. Despite the serious consequences of infection with P. sordellii, treatment is difficult because of the rapid progression from recognition of the first symptoms to death (Aldape et al., 2006).


July 7, 2019

Comparative genomic analysis of two clonally related multidrug resistant Mycobacterium tuberculosis by Single Molecule Real Time Sequencing.

Background: Multidrug-resistant tuberculosis (MDR-TB) is posing a major threat to global TB control. In this study, we focused on two consecutive MDR-TB isolated from the same patient before and after the initiation of anti-TB treatment. To better understand the genomic characteristics of MDR-TB, Single Molecule Real-Time (SMRT) Sequencing and comparative genomic analyses was performed to identify mutations that contributed to the stepwise development of drug resistance and growth fitness in MDR-TB underin vivochallenge of anti-TB drugs.Result:Both pre-treatment and post-treatment strain demonstrated concordant phenotypic and genotypic susceptibility profiles toward rifampicin, pyrazinamide, streptomycin, fluoroquinolones, aminoglycosides, cycloserine, ethionamide, and para-aminosalicylic acid. However, although both strains carried identical missense mutations atrpoBS531L,inhAC-15T, andembBM306V, MYCOTB Sensititre assay showed that the post-treatment strain had 16-, 8-, and 4-fold elevation in the minimum inhibitory concentrations (MICs) toward rifabutin, isoniazid, and ethambutol respectively. The results have indicated the presence of additional resistant-related mutations governing the stepwise development of MDR-TB. Further comparative genomic analyses have identified three additional polymorphisms between the clinical isolates. These include a single nucleotide deletion at nucleotide position 360 ofrv0888in pre-treatment strain, and a missense mutation atrv3303c(lpdA)V44I and a 6-bp inframe deletion at codon 67-68 inrv2071c(cobM)in the post-treatment strain. Multiple sequence alignment showed that these mutations were occurring at highly conserved regions among pathogenic mycobacteria. Using structural-based and sequence-based algorithms, we further predicted that the mutations potentially have deleterious effect on protein function.Conclusion:This is the first study that compared the full genomes of two clonally-related MDR-TB clinical isolates during the course of anti-TB treatment. Our work has demonstrated the robustness of SMRT Sequencing in identifying mutations among MDR-TB clinical isolates. Comparative genome analysis also suggested novel mutations atrv0888, lpdA, andcobMthat might explain the difference in antibiotic resistance and growth pattern between the two MDR-TB strains.


July 7, 2019

The genome of an intranuclear parasite, Paramicrosporidium saccamoebae, reveals alternative adaptations to obligate intracellular parasitism.

Intracellular parasitism often results in gene loss, genome reduction, and dependence upon the host for cellular functioning. Rozellomycota is a clade comprising many such parasites and is related to the diverse, highly reduced, animal parasites, Microsporidia. We sequenced the nuclear and mitochondrial genomes ofParamicrosporidium saccamoebae[Rozellomycota], an intranuclear parasite of amoebae. A canonical fungal mitochondrial genome was recovered fromP. saccamoebaethat encodes genes necessary for the complete oxidative phosphorylation pathway including Complex I, differentiating it from most endoparasites including its sequenced relatives in Rozellomycota and Microsporidia. Comparative analysis revealed thatP. saccamoebaeshares more gene content with distantly related Fungi than with its closest relatives, suggesting that genome evolution in Rozellomycota and Microsporidia has been affected by repeated and independent gene losses, possibly as a result of variation in parasitic strategies (e.g. host and subcellular localization) or due to multiple transitions to parasitism.


July 7, 2019

Post genomics era for orchid research.

Among 300,000 species in angiosperms, Orchidaceae containing 30,000 species is one of the largest families. Almost every habitats on earth have orchid plants successfully colonized, and it indicates that orchids are among the plants with significant ecological and evolutionary importance. So far, four orchid genomes have been sequenced, including Phalaenopsis equestris, Dendrobium catenatum, Dendrobium officinale, and Apostaceae shengen. Here, we review the current progress and the direction of orchid research in the post genomics era. These include the orchid genome evolution, genome mapping (genome-wide association analysis, genetic map, physical map), comparative genomics (especially receptor-like kinase and terpene synthase), secondary metabolomics, and genome editing.


July 7, 2019

Copy number variation and expression analysis reveals a nonorthologous pinta gene family member involved in butterfly vision.

Vertebrate (cellular retinaldehyde-binding protein) and Drosophila (prolonged depolarization afterpotential is not apparent [PINTA]) proteins with a CRAL-TRIO domain transport retinal-based chromophores that bind to opsin proteins and are necessary for phototransduction. The CRAL-TRIO domain gene family is composed of genes that encode proteins with a common N-terminal structural domain. Although there is an expansion of this gene family in Lepidoptera, there is no lepidopteran ortholog of pinta. Further, the function of these genes in lepidopterans has not yet been established. Here, we explored the molecular evolution and expression of CRAL-TRIO domain genes in the butterfly Heliconius melpomene in order to identify a member of this gene family as a candidate chromophore transporter. We generated and searched a four tissue transcriptome and searched a reference genome for CRAL-TRIO domain genes. We expanded an insect CRAL-TRIO domain gene phylogeny to include H. melpomene and used 18 genomes from 4 subspecies to assess copy number variation. A transcriptome-wide differential expression analysis comparing four tissue types identified a CRAL-TRIO domain gene, Hme CTD31, upregulated in heads suggesting a potential role in vision for this CRAL-TRIO domain gene. RT-PCR and immunohistochemistry confirmed that Hme CTD31 and its protein product are expressed in the retina, specifically in primary and secondary pigment cells and in tracheal cells. Sequencing of eye protein extracts that fluoresce in the ultraviolet identified Hme CTD31 as a possible chromophore binding protein. Although we found several recent duplications and numerous copy number variants in CRAL-TRIO domain genes, we identified a single copy pinta paralog that likely binds the chromophore in butterflies.© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019

Diversity in grain amaranths and relatives distinguished by genotyping by sequencing (GBS).

The genotyping by sequencing (GBS) method has become a molecular marker technology of choice for many crop plants because of its simultaneous discovery and evaluation of a large number of single nucleotide polymorphisms (SNPs) and utility for germplasm characterization. Genome representation and complexity reduction are the basis for GBS fingerprinting and can vary by species based on genome size and other sequence characteristics. Grain amaranths are a set of three species that were domesticated in the New World to be high protein, pseudo-cereal grain crops. The goal of this research was to employ the GBS technique for diversity evaluation in grain amaranth accessions and close relatives from sixAmaranthusspecies and determine genetic differences and similarities between groupings. A total of 10,668 SNPs were discovered in 94 amaranth accessions withApeKI complexity reduction and 10X genome coverage Illumina sequencing. The majority of the SNPs were species specific with 4,568 and 3,082 for the two grain amaranths originating in Central AmericaAmaranthus cruentus and A. hypochondriacusand 3,284 found amongst bothA. caudatus, originally domesticated in South America, and its close relative,A. quitensis. The distance matrix based on shared alleles provided information on the close relationships of the two cultivated Central American species with each other and of the wild and cultivated South American species with each other, as distinguished from the outgroup with two wild species,A. powelliiandA. retroflexus. The GBS data also distinguished admixture between each pair of species and the geographical origins and seed colors of the accessions. The SNPs we discovered here can be used for marker development for future amaranth study.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.