June 1, 2021  |  

Evaluating the potential of new sequencing technologies for genotyping and variation discovery in human data.

A first look at Pacific Biosciences RS data Pacific Biosciences technology provides a fundamentally new data type that provides the potential to overcome these limitations by providing significantly longer reads (now averaging >1kb), enabling more unique seeds for reference alignment. In addition, the lack of amplification in the library construction step avoids a common source of base composition bias. With these potential advantages in mind, we here evaluate the utility of the Pacific Biosciences RS platform for human medical resequencing projects by assessing the quality of the raw sequencing data, as well as its use for SNP discovery and genotyping using the Genome Analysis Toolkit (GATK).


June 1, 2021  |  

Complete HIV-1 genomes from single molecules: Diversity estimates in two linked transmission pairs using clustering and mutual information.

We sequenced complete HIV-1 genomes from single molecules using Single Molecule, Real- Time (SMRT) Sequencing and derive de novo full-length genome sequences. SMRT sequencing yields long-read sequencing results from individual DNA molecules with a rapid time-to-result. These attributes make it a useful tool for continuous monitoring of viral populations. The single-molecule nature of the sequencing method allows us to estimate variant subspecies and relative abundances by counting methods. We detail mathematical techniques used in viral variant subspecies identification including clustering distance metrics and mutual information. Sequencing was performed in order to better understand the relationships between the specific sequences of transmitted viruses in linked transmission pairs. Samples representing HIV transmission pairs were selected from the Zambia Emory HIV Research Project (Lusaka, Zambia) and sequenced. We examine Single Genome Amplification (SGA) prepped samples and samples containing complex mixtures of genomes. Whole genome consensus estimates for each of the samples were made. Genome reads were clustered using a simple distance metric on aligned reads. Appropriate thresholds were chosen to yield distinct clusters of HIV genomes within samples. Mutual information between columns in the genome alignments was used to measure dependence. In silico mixtures of reads from the SGA samples were made to simulate samples containing exactly controlled complex mixtures of genomes and our clustering methods were applied to these complex mixtures. SMRT Sequencing data contained multiple full-length (greater than 9 kb) continuous reads for each sample. Simple whole genome consensus estimates easily identified transmission pairs. The clustering of the genome reads showed diversity differences between the samples, allowing us to characterize the diversity of the individual quasi-species comprising the patient viral populations across the full genome. Mutual information identified possible dependencies of different positions across the full HIV-1 genome. The SGA consensus genomes agreed with prior Sanger sequencing. Our clustering methods correctly segregated reads to their correct originating genome for the synthetic SGA mixtures. The results open up the potential for reference-agnostic and cost effective full genome sequencing of HIV-1.


June 1, 2021  |  

Long-read, single-molecule applications for protein engineering.

The long read lengths of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases of sequence. This feature is particularly useful in the context of protein engineering, where large numbers of similar constructs are generated routinely to explore the effects of mutations on function and stability. We have developed a PCR-based barcoded sequencing method to generate high quality, full-length sequence data for batches of constructs generated in a common backbone. Individual barcodes are coupled to primers targeting a common region of the vector of interest. The amplified products are pooled into a single DNA library, and sequencing data are clustered by barcode to generate multi-molecule consensus sequences for each construct present in the pool. As a proof-of-concept dataset, we have generated a library of 384 randomly mutated variants of the Phi29 DNA polymerase, a 575 amino acid protein encoded by a 1.7 kb gene. These variants were amplified with a set of barcoded primers, and the resulting library was sequenced on a single SMRT Cell. The data produced sequences that were completely concordant with independent Sanger sequencing, for a 100% accurate reconstruction of the set of clones.


June 1, 2021  |  

Near perfect de novo assemblies of eukaryotic genomes using PacBio long read sequencing.

Third generation single molecule sequencing technology from Pacific Biosciences, Moleculo, Oxford Nanopore, and other companies are revolutionizing genomics by enabling the sequencing of long, individual molecules of DNA and RNA. One major advantage of these technologies over current short read sequencing is the ability to sequence much longer molecules, thousands or tens of thousands of nucleotides instead of mere hundreds. This capacity gives researchers substantially greater power to probe into microbial, plant, and animal genomes, but it remains unknown on how to best use these data. To answer this, we systematically evaluated the human genome and 25 other important genomes across the tree of life ranging in size from 1Mbp to 3Gbp in an attempt to answer how long the reads need to be and how much coverage is necessary to completely assemble their chromosomes with single molecule sequencing. We also present a novel error correction and assembly algorithm using a combination of PacBio and pre-assembled Illumina sequencing. This new algorithm greatly outperforms other published hybrid algorithms.


June 1, 2021  |  

The use of PacBio and Hi-C data in de novo assembly of the goat genome.

Generating de novo reference genome assemblies for non-model organisms is a laborious task that often requires a large amount of data from several sequencing platforms and cytogenetic surveys. By using PacBio sequence data and new library creation techniques, we present a de novo, high quality reference assembly for the goat (Capra hircus) that demonstrates a primarily sequencing-based approach to efficiently create new reference assemblies for Eukaryotic species. This goat reference genome was created using 38 million PacBio P5-C3 reads generated from a San Clemente goat using the Celera Assembler PBcR pipeline with PacBio read self-correction. In order to generate the assembly, corrected and filtered reads were pre-assembled into a consensus model using PBDAGCON, and subsequently assembled using the Celera Assembly version 8.2. We generated 5,902 contigs using this method with a contig N50 size of 2.56 megabases. In order to generate chromosome-sized scaffolds, we used the LACHESIS scaffolding method to identify cis-chromosome Hi-C interactions in order to link contigs together. We then compared our new assembly to the existing goat reference assembly to identify large-scale discrepancies. In our comparison, we identified 247 disagreements between the two assemblies consisting of 123 inversions and 124 chromosome-contig relocations. The high quality of this data illustrates how this methodology can be used to efficiently generate new reference genome assemblies without the use of expensive fluorescent cytometry or large quantities of data from multiple sequencing platforms.


June 1, 2021  |  

Progress on the reassembly and annotation of the goat genome.

The goat (Capra hircus) remains an important livestock species due to the species’ ability to forage and provide milk, meat and wool in arid environments. The current goat reference assembly and annotation borrows heavily from other loosely related livestock species, such as cattle, and may not reflect the unique structural and functional characteristics of the species. We present preliminary data from a new de novo reference assembly for goat that primarily utilizes 38 million PacBio P5-C3 reads generated from an inbred San Clemente goat. This assembly consists of only 5,902 contigs with a contig N50 size of 2.56 megabases which were grouped into scaffolds using cis-chromosome associations generated by the analysis of Hi-C sequence reads. To provide accurate functional genetic annotation, we utilized existing RNA-seq data and generated new data consisting of over 784 million reads from a combination of 27 different developmental timepoints/tissues. This dataset provides a tangible improvement over existing goat genomics resources by correcting over 247 misassemblies in the current goat reference genome and by annotating predicted gene models with actual expressed transcript data. Our goal is to provide a high quality resource to researchers to enable future genomic selection and functional prediction within the field of goat genomics.


June 1, 2021  |  

De novo assembly of a complex panicoid grass genome using ultra-long PacBio reads with P6C4 chemistry

Drought is responsible for much of the global losses in crop yields and understanding how plants naturally cope with drought stress is essential for breeding and engineering crops for the changing climate. Resurrection plants desiccate to complete dryness during times of drought, then “come back to life” once water is available making them an excellent model for studying drought tolerance. Understanding the molecular networks governing how resurrection plants handle desiccation will provide targets for crop engineering. Oropetium thomaeum (Oro) is a resurrection plant that also has the smallest known grass genome at 250 Mb compared to Brachypodium distachyon (300 Mb) and rice (350 Mb). Plant genomes, especially grasses, have complex repeat structures such as telomeres, centromeres, and ribosomal gene cassettes, and high heterozygosity, which makes them difficult to assembly using short read next generation sequencing technologies. Ultra-long PacBio reads using the new P6C4 chemistry and the latest 15kb Blue Pippin size-selection protocol to generate 20kb insert libraries that yielded an average read length of 12kb providing ~72X coverage, and 10X coverage with reads over 20kb. The HGAP assembly covers 98% of the genome with a contig N50 of 2.4 Mb, which makes it one of the highest quality and most complete plant genomes assembled to date. Oro has a compact genome structure compared to other grasses with only 16% repeat sequences but has very good collinearity with other grasses. Understanding the genomic mechanisms of extreme desiccation tolerance in resurrection plants like Oro will provide insights for engineering and intelligent breeding of improved food, fuel, and fiber crops.


June 1, 2021  |  

Complete microbial genomes, epigenomes, and transcriptomes using long-read PacBio Sequencing.

For comprehensive metabolic reconstructions and a resulting understanding of the pathways leading to natural products, it is desirable to obtain complete information about the genetic blueprint of the organisms used. Traditional Sanger and next-generation, short-read sequencing technologies have shortcomings with respect to read lengths and DNA-sequence context bias, leading to fragmented and incomplete genome information. The development of long-read, single molecule, real-time (SMRT) DNA sequencing from Pacific Biosciences, with >10,000 bp average read lengths and a lack of sequence context bias, now allows for the generation of complete genomes in a fully automated workflow. In addition to the genome sequence, DNA methylation is characterized in the process of sequencing. PacBio® sequencing has also been applied to microbial transcriptomes. Long reads enable sequencing of full-length cDNAs allowing for identification of complete gene and operon sequences without the need for transcript assembly. We will highlight several examples where these capabilities have been leveraged in the areas of industrial microbiology, including biocommodities, biofuels, bioremediation, new bacteria with potential commercial applications, antibiotic discovery, and livestock/plant microbiome interactions.


June 1, 2021  |  

The resurgence of reference quality genome sequence.

Since the advent of Next-Generation Sequencing (NGS), the cost of de novo genome sequencing and assembly have dropped precipitately, which has spurred interest in genome sequencing overall. Unfortunately the contiguity of the NGS assembled sequences, as well as the accuracy of these assemblies have suffered. Additionally, most NGS de novo assemblies leave large portions of genomes unresolved, and repetitive regions are often collapsed. When compared to the reference quality genome sequences produced before the NGS era, the new sequences are highly fragmented and often prove to be difficult to properly annotate. In some cases the contiguous portions are smaller than the average gene size making the sequence not nearly as useful for biologists as the earlier reference quality genomes including of Human, Mouse, C. elegans, or Drosophila. Recently, new 3rd generation sequencing technologies, long-range molecular techniques, and new informatics tools have facilitated a return to high quality assembly. We will discuss the capabilities of the technologies and assess their impact on assembly projects across the tree of life from small microbial and fungal genomes through large plant and animal genomes. Beyond improvements to contiguity, we will focus on the additional biological insights that can be made with better assemblies, including more complete analysis genes in their flanking regulatory context, in-depth studies of transposable elements and other complex gene families, and long-range synteny analysis of entire chromosomes. We will also discuss the need for new algorithms for representing and analyzing collections of many complete genomes at once.


June 1, 2021  |  

Toward comprehensive genomics analysis with de novo assembly.

Whole genome sequencing can provide comprehensive information important for determining the biochemical and genetic nature of all elements inside a genome. The high-quality genome references produced from past genome projects and advances in short-read sequencing technologies have enabled quick and cheap analysis for simple variants. However even with the focus on genome-wide resequencing for SNPs, the heritability of more than 50% of human diseases remains elusive. For non-human organisms, high-contiguity references are deficient, limiting the analysis of genomic features. The long and unbiased reads from single molecule, real-time (SMRT) Sequencing and new de novo assembly approaches have demonstrated the ability to detect more complicated variants and chromosome-level phasing. Moreover, with the recent advance of bioinformatics algorithms and tools, the computation tasks for completing high-quality de novo assembly of large genomes becomes feasible with commodity hardware. Ongoing development in sequencing technologies and bioinformatics will likely lead to routine generation of high-quality reference assemblies in the future. We discuss the current state of art and the challenges in bioinformatics toward such a goal. More specifically, explicit examples of pragmatic computational requirements for assembling mammalian-size genomes and algorithms suitable for processing diploid genomes are discussed.


June 1, 2021  |  

Barcoding strategies for multiplexing of samples using a long-read sequencing technology.

We have developed barcoding reagents and workflows for multiplexing amplicons or fragmented native genomic (DNA) prior to Single Molecule, Real-Time (SMRT) Sequencing. The long reads of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases (kb) of sequence. This feature is particularly useful in the context of mutational analysis or SNP confirmation, where a large number of samples are generated routinely. To validate this workflow, a set of 384 1.7-kb amplicons, each derived from variants of the Phi29 DNA polymerase gene, were barcoded during amplification, pooled, and sequenced on a single SMRT Cell. To demonstrate the applicability of the method to longer inserts, a library of 96 5-kb clones derived from the E. coli genome was sequenced.


June 1, 2021  |  

Making the most of long reads: towards efficient assemblers for reference quality, de novo reconstructions

2015 SMRT Informatics Developers Conference Presentation Slides: Gene Myers, Ph.D., Founding Director, Systems Biology Center, Max Planck Institute delivered the keynote presentation. He talked about building efficient assemblers, the importance of random error distribution in sequencing data, and resolving tricky repeats with very long reads. He also encouraged developers to release assembly modules openly, and noted that data should be straightforward to parse since sharing data interfaces is easier than sharing software interfaces.


June 1, 2021  |  

Highly accurate read mapping of third generation sequencing reads for improved structural variation analysis

Characterizing genomic structural variations (SV) is vital for understanding how genomes evolve. Furthermore, SVs are known for playing a role in a wide range of diseases including cancer, autism, and schizophrenia. Nevertheless, due to their complexity they remain harder to detect and less understood than single nucleotide variations. Recently, third-generation sequencing has proven to be an invaluable tool for detecting SVs. The markedly higher read length not only allows single reads to span a SV, it also enables reliable mapping to repetitive regions of the genome. These regions often contain SVs and are inaccessible to short-read mapping. However, current sequencing technologies like PacBio show a raw read error rate of 10% or more consisting mostly of insertions and deletions. Especially in repetitive regions the high error rate causes current mapping methods to fail finding exact borders for SVs, to split up large deletions and insertions into several small ones, or in some cases, like inversions, to fail reporting them at all. Furthermore, for complex SVs it is not possible to find one end-to-end alignment for a given read. The decision of when to split a read into two or more separate alignments without knowledge of the underlying SV poses an even bigger challenge to current read mappers. Here we present NextGenMap-LR for long single molecule PacBio reads which addresses these issues. NextGenMap-LR uses a fast k-mer search to quickly find anchor regions between parts of a read and the reference and evaluates them using a vectorized implementation of the Smith-Waterman (SW) algorithm. The resulting high-quality anchors are then used to determine whether a read spans an SV and has to be split or can be aligned contiguously. Finally, NextGenMap-LR uses a banded SW algorithm to compute the final alignment(s). In this last step, to account for both the sequencing error and real genomic variations, we employ a non-affine gap model that penalizes gap extensions for longer gaps less than for shorter ones. Based on simulated as well as verified human breast cancer SV data we show how our approach significantly improves mapping of long reads around SVs. The non-affine gap model is especially effective at more precisely identifying the position of the breakpoint, and the enhanced scoring scheme enables subsequent variation callers to identify SVs that would have been missed otherwise.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.