X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, August 27, 2020

Case Study: SMRT sequencing brings clarity to HIV vaccine and transplant research at the Wisconsin national primate research center

The Wisconsin National Primate Research Center (WNPRC) is a leading Major Histocompatibility Complex (MHC) typing lab that focuses on monkeys. While many scientists are familiar with the importance of characterizing the histocompatibility region of the human genome for applications like disease research or tissue typing before organ transplantation, fewer are aware of the need to accurately type this region in non-human primates. At the primate research lab, part of the University of Wisconsin- Madison, scientists are analyzing immune regions to help test potential HIV vaccines and AIDS therapies. Their work is essential for understanding the effects of treatment ahead of…

Read More »

Tuesday, April 21, 2020

Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases.

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with ‘ready-to-use’ deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and…

Read More »

Tuesday, April 21, 2020

Chromosome-length haplotigs for yak and cattle from trio binning assembly of an F1 hybrid

Background Assemblies of diploid genomes are generally unphased, pseudo-haploid representations that do not correctly reconstruct the two parental haplotypes present in the individual sequenced. Instead, the assembly alternates between parental haplotypes and may contain duplications in regions where the parental haplotypes are sufficiently different. Trio binning is an approach to genome assembly that uses short reads from both parents to classify long reads from the offspring according to maternal or paternal haplotype origin, and is thus helped rather than impeded by heterozygosity. Using this approach, it is possible to derive two assemblies from an individual, accurately representing both parental contributions…

Read More »

Tuesday, April 21, 2020

A robust benchmark for germline structural variant detection

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. Translating these methods to routine research and clinical practice requires robust benchmark sets. We developed the first benchmark set for identification of both false negative and false positive germline SVs, which complements recent efforts emphasizing increasingly comprehensive characterization of SVs. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods, both alignment- and de novo assembly-based,…

Read More »

Tuesday, April 21, 2020

Transcriptional initiation of a small RNA, not R-loop stability, dictates the frequency of pilin antigenic variation in Neisseria gonorrhoeae.

Neisseria gonorrhoeae, the sole causative agent of gonorrhea, constitutively undergoes diversification of the Type IV pilus. Gene conversion occurs between one of the several donor silent copies located in distinct loci and the recipient pilE gene, encoding the major pilin subunit of the pilus. A guanine quadruplex (G4) DNA structure and a cis-acting sRNA (G4-sRNA) are located upstream of the pilE gene and both are required for pilin antigenic variation (Av). We show that the reduced sRNA transcription lowers pilin Av frequencies. Extended transcriptional elongation is not required for Av, since limiting the transcript to 32 nt allows for normal…

Read More »

Tuesday, April 21, 2020

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions…

Read More »

Tuesday, April 21, 2020

Comparison of mitochondrial DNA variants detection using short- and long-read sequencing.

The recent advent of long-read sequencing technologies is expected to provide reasonable answers to genetic challenges unresolvable by short-read sequencing, primarily the inability to accurately study structural variations, copy number variations, and homologous repeats in complex parts of the genome. However, long-read sequencing comes along with higher rates of random short deletions and insertions, and single nucleotide errors. The relatively higher sequencing accuracy of short-read sequencing has kept it as the first choice of screening for single nucleotide variants and short deletions and insertions. Albeit, short-read sequencing still suffers from systematic errors that tend to occur at specific positions where…

Read More »

Tuesday, April 21, 2020

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of…

Read More »

Tuesday, April 21, 2020

Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline

Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and allow for annotation of TEs. There are numerous methods for each class of elements with unknown relative performance metrics. We benchmarked existing programs based on a curated library of rice TEs. Using the most robust programs, we created a comprehensive pipeline called Extensive de-novo TE Annotator (EDTA) that produces a condensed TE library for annotations of structurally intact and fragmented elements. EDTA is open-source and freely available: https://github.com/oushujun/EDTA.List of abbreviationsTETransposable ElementsLTRLong Terminal…

Read More »

Tuesday, April 21, 2020

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a…

Read More »

Tuesday, April 21, 2020

Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences.

Development of high-throughput sequencing techniques have greatly benefited our understanding about microbial ecology; yet the methods producing short reads suffer from species-level resolution and uncertainty of identification. Here we optimize PacBio-based metabarcoding protocols covering the Internal Transcribed Spacer (ITS region) and partial Small Subunit (SSU) of the rRNA gene for species-level identification of all eukaryotes, with a specific focus on Fungi (including Glomeromycota) and Stramenopila (particularly Oomycota). Based on tests on composite soil samples and mock communities, we propose best suitable degenerate primers, ITS9munngs + ITS4ngsUni for eukaryotes and selected groups therein and discuss pros and cons of long read-based…

Read More »

Tuesday, April 21, 2020

deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index

Long-read RNA sequencing (RNA-seq) is promising to transcriptomics studies, however, the alignment of the reads is still a fundamental but non-trivial task due to the sequencing errors and complicated gene structures. We propose deSALT, a tailored two-pass long RNA-seq read alignment approach, which constructs graph-based alignment skeletons to sensitively infer exons, and use them to generate spliced reference sequence to produce refined alignments. deSALT addresses several difficult issues, such as small exons, serious sequencing errors and consensus spliced alignment. Benchmarks demonstrate that this approach has a better ability to produce high-quality full-length alignments, which has enormous potentials to transcriptomics studies.

Read More »

Tuesday, April 21, 2020

High satellite repeat turnover in great apes studied with short- and long-read technologies.

Satellite repeats are a structural component of centromeres and telomeres, and in some instances their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50?bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently…

Read More »

Tuesday, April 21, 2020

A comprehensive evaluation of long read error correction methods

Motivation: Third-generation sequencing technologies can sequence long reads, which is advancing the frontiers of genomics research. However, their high error rates prohibit accurate and efficient downstream analysis. This difficulty has motivated the development of many long read error correction tools, which tackle this problem through sampling redundancy and/or leveraging accurate short reads of the same biological samples. Existing studies to asses these tools use simulated data sets, and are not sufficiently comprehensive in the range of software covered or diversity of evaluation measures used. Results: In this paper, we present a categorization and review of long read error correction methods,…

Read More »

Tuesday, April 21, 2020

The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation.

Although antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. This reservoir forms even when ART is initiated early after infection, but the dynamics of its formation are largely unknown. The viral reservoirs of individuals who initiate ART during chronic infection are generally larger and genetically more diverse than those of individuals who initiate therapy during acute infection, consistent with the hypothesis that the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses…

Read More »

1 2 3 8

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »