X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Author(s): Rescheneder, Philipp and Sedlazeck, Fritz J. and Nattestad, Maria and Von Haeseler, Arndt and Schatz, Michael S.

Characterizing genomic structural variations (SV) is vital for understanding how genomes evolve. Furthermore, SVs are known for playing a role in a wide range of diseases including cancer, autism, and schizophrenia. Nevertheless, due to their complexity they remain harder to detect and less understood than single nucleotide variations. Recently, third-generation sequencing has proven to be an invaluable tool for detecting SVs. The markedly higher read length not only allows single reads to span a SV, it also enables reliable mapping to repetitive regions of the genome. These regions often contain SVs and are inaccessible to short-read mapping. However, current sequencing technologies like PacBio show a raw read error rate of 10% or more consisting mostly of insertions and deletions. Especially in repetitive regions the high error rate causes current mapping methods to fail finding exact borders for SVs, to split up large deletions and insertions into several small ones, or in some cases, like inversions, to fail reporting them at all. Furthermore, for complex SVs it is not possible to find one end-to-end alignment for a given read. The decision of when to split a read into two or more separate alignments without knowledge of the underlying SV poses an even bigger challenge to current read mappers. Here we present NextGenMap-LR for long single molecule PacBio reads which addresses these issues. NextGenMap-LR uses a fast k-mer search to quickly find anchor regions between parts of a read and the reference and evaluates them using a vectorized implementation of the Smith-Waterman (SW) algorithm. The resulting high-quality anchors are then used to determine whether a read spans an SV and has to be split or can be aligned contiguously. Finally, NextGenMap-LR uses a banded SW algorithm to compute the final alignment(s). In this last step, to account for both the sequencing error and real genomic variations, we employ a non-affine gap model that penalizes gap extensions for longer gaps less than for shorter ones. Based on simulated as well as verified human breast cancer SV data we show how our approach significantly improves mapping of long reads around SVs. The non-affine gap model is especially effective at more precisely identifying the position of the breakpoint, and the enhanced scoring scheme enables subsequent variation callers to identify SVs that would have been missed otherwise.

Organization: Center for Integrative Bioinformatics
Year: 2015

View Conference Poster

 

Stay
Current

Visit our blog »