Menu
July 7, 2019  |  

Complete genome sequence of carotenoid-producing Microbacterium sp. strain PAMC28756 isolated from an Antarctic lichen.

Microbacterium sp. strain PAMC28756, of the family Microbacteriaceae, was isolated from Stereocaulon sp., an Antarctic lichen. Complete genome sequencing of Microbacterium sp. PAMC28756 revealed, for the first time in the genus Microbacterium, a series of key genes involved in C50 carotenoid biosynthesis. An analysis of the Microbacterium sp. PAMC28756 genome will lead to a better understanding of the carotenoid biosynthesis pathway. Furthermore, the sequence data will provide novel insight into UV radiation resistance in extremely cold environments. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Deinococcus actinosclerus BM2(T), a bacterium with Gamma-radiation resistance isolated from soil in South Korea.

A Gram-positive, short-rod shaped and non-motile bacterium Deinococcus actinosclerus BM2(T), resistant to gamma and UV radiation, was isolated from a soil sample collected in South Korea. Strain BM2(T) showed high resistance to gamma radiation with D10 value of 9 kGy. The complete genome of D. actinosclerus BM2(T) consists of a single chromosome (3,264,334bp). The genome features showed the presence of intracellular proteases that help to eliminate radiation-induced ROS during recovery from ionizing radiation damage. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Vibrio parahaemolyticus FORC_023 isolated from raw fish storage water.

Vibrio parahaemolyticusis a Gram-negative halophilic bacterium that causes food-borne gastroenteritis in humans who consumeV. parahaemolyticus-contaminated seafood.The FORC_023 strain was isolated from raw fish storage water, containing live fish at a sashimi restaurant. Here, we aimed to sequence and characterize the genome of the FORC_023 strain. The genome of the FORC_023 strain showed two circular chromosomes, which contained 4227 open reading frames (ORFs), 131 tRNA genes and 37 rRNA genes. Although the genome of FORC_023 did not include major virulence genes, such as genes encoding thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), it contained genes encoding other hemolysins, secretion systems, iron uptake-related proteins and severalV. parahaemolyticusislands. The highest average nucleotide identity value was obtained between the FORC_023 strain and UCM-V493 (CP007004-6). Comparative genomic analysis of FORC_023 with UCM-V493 revealed that FORC_023 carried an additional genomic region encoding virulence factors, such as repeats-in-toxin and type II secretion factors. Furthermore,in vitrocytotoxicity testing showed that FORC_023 exhibited a high level of cytotoxicity toward INT-407 human epithelial cells. These results suggested that the FORC_023 strain may be a food-borne pathogen.© FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site.

Members of the genus Geobacillus have been isolated from a wide variety of habitats worldwide and are the subject for targeted enzyme utilization in various industrial applications. Here we report the isolation and complete genome sequence of the thermophilic starch-degrading Geobacillus sp. 12AMOR1. The strain 12AMOR1 was isolated from deep-sea hot sediment at the Jan Mayen hydrothermal Vent Site. Geobacillus sp. 12AMOR1 consists of a 3,410,035 bp circular chromosome and a 32,689 bp plasmid with a G?+?C content of 52 % and 47 %, respectively. The genome comprises 3323 protein-coding genes, 88 tRNA species and 10 rRNA operons. The isolate grows on a suite of sugars, complex polysaccharides and proteinous carbon sources. Accordingly, a versatility of genes encoding carbohydrate-active enzymes (CAZy) and peptidases were identified in the genome. Expression, purification and characterization of an enzyme of the glycoside hydrolase family 13 revealed a starch-degrading capacity and high thermal stability with a melting temperature of 76.4 °C. Altogether, the data obtained point to a new isolate from a marine hydrothermal vent with a large bioprospecting potential.


July 7, 2019  |  

Near-Complete Genome Sequence of Clostridium paradoxum Strain JW-YL-7.

Clostridium paradoxum strain JW-YL-7 is a moderately thermophilic anaerobic alkaliphile isolated from the municipal sewage treatment plant in Athens, GA. We report the near-complete genome sequence of C. paradoxum strain JW-YL-7 obtained by using PacBio DNA sequencing and Pilon for sequence assembly refinement with Illumina data. Copyright © 2016 Lancaster et al.


July 7, 2019  |  

High-quality draft genomes from Thermus caliditerrae YIM 77777 and T. tengchongensis YIM 77401, isolates from Tengchong, China.

The draft genomes of Thermus  tengchongensis YIM 77401 and T. caliditerrae YIM 77777 are 2,562,314 and 2,218,114 bp and encode 2,726 and 2,305 predicted genes, respectively. Gene content and growth experiments demonstrate broad metabolic capacity, including starch hydrolysis, thiosulfate oxidation, arsenite oxidation, incomplete denitrification, and polysulfide reduction. Copyright © 2016 Mefferd et al.


July 7, 2019  |  

Complete genome sequence of the crude oil-degrading thermophilic bacterium Geobacillus sp. JS12.

Here, we report the complete genome sequence of Geobacillus sp. JS12, isolated from composts located in Namhae, Korea, which shows extracellular lipolytic activities at high temperatures. An array of genes related to the utilization of lipids was identified by whole genome analysis. The genome sequence of the strain JS12 provides basic information for wider exploitation of thermostable industrial lipases. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Evaluation of an optimal epidemiologic typing scheme for Legionella pneumophila with whole genome sequence data using validation guidelines.

Sequence-based typing (SBT), analogous to multi-locus sequence typing (MLST), is the current gold-standard typing method for investigation of legionellosis outbreaks caused by Legionella pneumophila However, as common sequence types (STs) cause many infections, some investigations remain unresolved. Here, various whole genome sequencing (WGS)-based methods were evaluated according to published guidelines, including: i) single nucleotide polymorphism (SNP)-based; ii) extended multi-locus sequence typing (MLST) using different numbers of genes; iii) gene presence/absence, and iv) kmer-based. L. pneumophila serogroup 1 isolates (n=106) from the standard “typing panel”, previously used by the European Society for Clinical Microbiology Study Group on Legionella Infections (ESGLI) were tested together with another 229 isolates.Over 98% isolates were considered typable using the mapping- and kmer-based methods. Percentages of isolates with complete extended MLST profiles ranged from 99.1% (50-gene) to 86.8% (1455-gene) whilst only 41.5% produced a full profile with the gene presence/absence scheme. Replicates demonstrated that all methods offer 100% reproducibility. Indices of discrimination range from 0.972 (ribosomal MLST) to 0.999 (SNP-based), and all values are higher than that achieved with SBT (0.940). Epidemiological concordance is generally inversely related to discriminatory power. We propose that an extended MLST scheme with ~50 genes provides optimal epidemiological concordance whilst substantially improving the discrimination offered by SBT, and can be used as part of a hierarchical typing scheme that should maintain backwards compatibility and increase discrimination where necessary. This analysis will be useful for the ESGLI to design a scheme that has the potential to become the new gold standard typing method for L. pneumophila. Copyright © 2016 David et al.


July 7, 2019  |  

Complete genome sequence of cold-adapted enzyme producing Microbulbifer thermotolerans DAU221.

Microbulbifer thermotolerans DAU221 was preliminary isolated from the marine sediment samples in the Republic of Korea. Here, we present the complete genome sequence of M. thermotolerans DAU221, which consisted of 3,938,396 base pairs with a GC content of 56.57%. This genomic information should help us find the industrially useful enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Dyella thiooxydans ATSB10, a thiosulfate-oxidizing bacterium isolated from sunflower fields in South Korea.

Dyella thiooxydans ATSB10 (KACC 12756(T) = LMG 24673(T)) is a thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sunflower plants. In this study, we completely sequenced the genome of D. thiooxydans ATSB10 and identified the genes involved in thiosulfate oxidation and the metabolism of aromatic intermediates. Copyright © 2016 Hwangbo et al.


July 7, 2019  |  

High-quality permanent draft genome sequence of Ensifer sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India.

Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of Ensifer sp. PC2, together with genome sequence information and its annotation. The 8,458,965 bp high-quality permanent draft genome is arranged into 171 scaffolds of 171 contigs containing 8,344 protein-coding genes and 139 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.


July 7, 2019  |  

Draft genome sequences of two strains of Paenibacillus glucanolyticus with the ability to degrade lignocellulose.

Paenibacillus glucanolyticus 5162, a bacterium isolated from soil, and Paenibacillus glucanolyticus SLM1, a bacterium isolated from pulp mill waste, can utilize cellulose, hemicellulose and lignin as sole carbon sources for growth. These two strains of Paenibacillus glucanolyticus were sequenced using PacBio and Illumina MiSeq technologies. Copyright © 2016 Mathews et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.