July 7, 2019  |  

Evaluation of an optimal epidemiologic typing scheme for Legionella pneumophila with whole genome sequence data using validation guidelines.

Authors: David, Sophia and Mentasti, Massimo and Tewolde, Rediat and Aslett, Martin and Harris, Simon R and Afshar, Baharak and Underwood, Anthony and Fry, Norman K and Parkhill, Julian and Harrison, Timothy G

Sequence-based typing (SBT), analogous to multi-locus sequence typing (MLST), is the current gold-standard typing method for investigation of legionellosis outbreaks caused by Legionella pneumophila However, as common sequence types (STs) cause many infections, some investigations remain unresolved. Here, various whole genome sequencing (WGS)-based methods were evaluated according to published guidelines, including: i) single nucleotide polymorphism (SNP)-based; ii) extended multi-locus sequence typing (MLST) using different numbers of genes; iii) gene presence/absence, and iv) kmer-based. L. pneumophila serogroup 1 isolates (n=106) from the standard "typing panel", previously used by the European Society for Clinical Microbiology Study Group on Legionella Infections (ESGLI) were tested together with another 229 isolates.Over 98% isolates were considered typable using the mapping- and kmer-based methods. Percentages of isolates with complete extended MLST profiles ranged from 99.1% (50-gene) to 86.8% (1455-gene) whilst only 41.5% produced a full profile with the gene presence/absence scheme. Replicates demonstrated that all methods offer 100% reproducibility. Indices of discrimination range from 0.972 (ribosomal MLST) to 0.999 (SNP-based), and all values are higher than that achieved with SBT (0.940). Epidemiological concordance is generally inversely related to discriminatory power. We propose that an extended MLST scheme with ~50 genes provides optimal epidemiological concordance whilst substantially improving the discrimination offered by SBT, and can be used as part of a hierarchical typing scheme that should maintain backwards compatibility and increase discrimination where necessary. This analysis will be useful for the ESGLI to design a scheme that has the potential to become the new gold standard typing method for L. pneumophila. Copyright © 2016 David et al.

Journal: Journal of clinical microbiology
DOI: 10.1128/JCM.00432-16
Year: 2016

Read Publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.