Menu
July 7, 2019  |  

Genome sequences of two carbapenemase-resistant Klebsiella pneumoniae ST258 isolates.

Klebsiella pneumoniae, an ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen, has acquired multiple antibiotic resistance genes and is becoming a serious public health threat. Here, we report the genome sequences of two representative strains of K. pneumoniae from the emerging K. pneumoniae carbapenemase (KPC) outbreak in northeast Ohio belonging to sequence type 258 (ST258) (isolates Kb140 and Kb677, which were isolated from blood and urine, respectively). Both isolates harbor a blaKPC gene, and strain Kb140 carries blaKPC-2, while Kb677 carries blaKPC-3. Copyright © 2014 Ramirez et al.


July 7, 2019  |  

Type I restriction enzymes and their relatives.

Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.


July 7, 2019  |  

The odd one out: Bacillus ACT bacteriophage CP-51 exhibits unusual properties compared to related Spounavirinae W.Ph. and Bastille.

The Bacillus ACT group includes three important pathogenic species of Bacillus: anthracis, cereus and thuringiensis. We characterized three virulent bacteriophages, Bastille, W.Ph. and CP-51, that infect various strains of these three species. We have determined the complete genome sequences of CP-51, W.Ph. and Bastille, and their physical genome structures. The CP-51 genome sequence could only be obtained using a combination of conventional and second and third next generation sequencing technologies – illustrating the problems associated with sequencing highly modified DNA. We present evidence that the generalized transduction facilitated by CP-51 is independent of a specific genome structure, but likely due to sporadic packaging errors of the terminase. There is clear correlation of the genetic and morphological features of these phages validating their placement in the Spounavirinae subfamily (SPO1-related phages) of the Myoviridae. This study also provides tools for the development of phage-based diagnostics/therapeutics for this group of pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Diversification of bacterial genome content through distinct mechanisms over different timescales.

Bacterial populations often consist of multiple co-circulating lineages. Determining how such population structures arise requires understanding what drives bacterial diversification. Using 616 systematically sampled genomes, we show that Streptococcus pneumoniae lineages are typically characterized by combinations of infrequently transferred stable genomic islands: those moving primarily through transformation, along with integrative and conjugative elements and phage-related chromosomal islands. The only lineage containing extensive unique sequence corresponds to a set of atypical unencapsulated isolates that may represent a distinct species. However, prophage content is highly variable even within lineages, suggesting frequent horizontal transmission that would necessitate rapidly diversifying anti-phage mechanisms to prevent these viruses sweeping through populations. Correspondingly, two loci encoding Type I restriction-modification systems able to change their specificity over short timescales through intragenomic recombination are ubiquitous across the collection. Hence short-term pneumococcal variation is characterized by movement of phage and intragenomic rearrangements, with the slower transfer of stable loci distinguishing lineages.


July 7, 2019  |  

Quality scores for 32,000 genomes.

More than 80% of the microbial genomes in GenBank are of ‘draft’ quality (12,553 draft vs. 2,679 finished, as of October, 2013). We have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences.Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes had quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have nearly all the 102 essential genes.The score can be used to set thresholds for screening data when analyzing “all published genomes” and reference data is either not available or not applicable. The scores highlighted organisms for which commonly used tools do not perform well. This information can be used to improve tools and to serve a broad group of users as more diverse organisms are sequenced. Unexpectedly, the comparison of predicted tRNAs across 15,000 high quality genomes showed that anticodons beginning with an ‘A’ (codons ending with a ‘U’) are almost non-existent, with the exception of one arginine codon (CGU); this has been noted previously in the literature for a few genomes, but not with the depth found here.


July 7, 2019  |  

Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages.

Third-generation cephalosporins are a class of ß-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids.


July 7, 2019  |  

A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons.

In plants, multiple lineages have evolved sex chromosomes independently, providing a powerful comparative framework, but few specific determinants controlling the expression of a specific sex have been identified. We investigated sex determinants in the Caucasian persimmon, Diospyros lotus, a dioecious plant with heterogametic males (XY). Male-specific short nucleotide sequences were used to define a male-determining region. A combination of transcriptomics and evolutionary approaches detected a Y-specific sex-determinant candidate, OGI, that displays male-specific conservation among Diospyros species. OGI encodes a small RNA targeting the autosomal MeGI gene, a homeodomain transcription factor regulating anther fertility in a dosage-dependent fashion. This identification of a feminizing gene suppressed by a Y-chromosome-encoded small RNA contributes to our understanding of the evolution of sex chromosome systems in higher plants. Copyright © 2014, American Association for the Advancement of Science.


July 7, 2019  |  

Finished bacterial genomes from shotgun sequence data.

Exceptionally accurate genome reference sequences have proven to be of great value to microbial researchers. Thus, to date, about 1800 bacterial genome assemblies have been “finished” at great expense with the aid of manual laboratory and computational processes that typically iterate over a period of months or even years. By applying a new laboratory design and new assembly algorithm to 16 samples, we demonstrate that assemblies exceeding finished quality can be obtained from whole-genome shotgun data and automated computation. Cost and time requirements are thus dramatically reduced.


July 7, 2019  |  

Next generation sequencing technologies and the changing landscape of phage genomics.

The dawn of next generation sequencing technologies has opened up exciting possibilities for whole genome sequencing of a plethora of organisms. The 2nd and 3rd generation sequencing technologies, based on cloning-free, massively parallel sequencing, have enabled the generation of a deluge of genomic sequences of both prokaryotic and eukaryotic origin in the last seven years. However, whole genome sequencing of bacterial viruses has not kept pace with this revolution, despite the fact that their genomes are orders of magnitude smaller in size compared with bacteria and other organisms. Sequencing phage genomes poses several challenges; (1) obtaining pure phage genomic material, (2) PCR amplification biases and (3) complex nature of their genetic material due to features such as methylated bases and repeats that are inherently difficult to sequence and assemble. Here we describe conclusions drawn from our efforts in sequencing hundreds of bacteriophage genomes from a variety of Gram-positive and Gram-negative bacteria using Sanger, 454, Illumina and PacBio technologies. Based on our experience we propose several general considerations regarding sample quality, the choice of technology and a “blended approach” for generating reliable whole genome sequences of phages.


July 7, 2019  |  

Development of new methods for the quantitative detection and typing of Lactobacillus parabuchneri in dairy products

Thirty-one isolates of Lactobacillus parabuchneri were obtained from cheese containing histamine; of these, 26 were found to possess the hdcA gene encoding histidine decarboxylase. By analysing the genome data of 13 isolates, specific targets for the development of PCR-based detection and typing systems for L. parabuchneri were identified. The real-time PCR for detection showed a linear quantification over a range of 7 logs and a detection limit of 10 gene equivalents per reaction. The strain typing method utilised the amplification of repeat sequences and showed discrimination comparable with a phylogenetic tree, based on genome comparisons. The method was suitable for detecting and monitoring the development of L. parabuchneri in raw milk and cheese.


July 7, 2019  |  

Genomic analysis of 495 vancomycin-resistant Enterococcus faecium reveals broad dissemination of a vanA plasmid in more than 19 clones from Copenhagen, Denmark.

From 2012 to 2014, there has been a huge increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) in Copenhagen, Denmark, with 602 patients infected or colonized with VREfm in 2014 compared with just 22 in 2012. The objective of this study was to describe the genetic epidemiology of VREfm to assess the contribution of clonal spread and horizontal transfer of the vanA transposon (Tn1546) and plasmid in the dissemination of VREfm in hospitals.VREfm from Copenhagen, Denmark (2012-14) were whole-genome sequenced. The clonal structure was determined and the structure of Tn1546-like transposons was characterized. One VREfm isolate belonging to the largest clonal group was sequenced using long-read technology to close a 37 kb vanA plasmid.Phylogeny revealed a polyclonal structure where 495 VREfm isolates were divided into 13 main groups and 7 small groups. The majority of the isolates were located in three groups (n?=?44, 100 and 218) and clonal spread of VREfm between wards and hospitals was identified. Five Tn1546-like transposon types were identified. A dominant truncated transposon (type 4, 92%) was spread across all but one VREfm group. The closed vanA plasmid was highly covered by reads from isolates containing the type 4 transposon.This study suggests that it was the dissemination of the type 4 Tn1546-like transposon and plasmid via horizontal transfer to multiple populations of E. faecium, followed by clonal spread of new VREfm clones, that contributed to the increase in and diversity of VREfm in Danish hospitals.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium.

From early 2012, a novel clone of vancomycin resistant Enterococcus faecium (assigned the multi locus sequence type ST796) was simultaneously isolated from geographically separate hospitals in south eastern Australia and New Zealand. Here we describe the complete genome sequence of Ef_aus0233, a representative ST796 E. faecium isolate. We used PacBio single molecule real-time sequencing to establish a high quality, fully assembled genome comprising a circular chromosome of 2,888,087 bp and five plasmids. Comparison of Ef_aus0233 to other E. faecium genomes shows Ef_aus0233 is a member of the epidemic hospital-adapted lineage and has evolved from an ST555-like ancestral progenitor by the accumulation or modification of five mosaic plasmids and five putative prophage, acquisition of two cryptic genomic islands, accrued chromosomal single nucleotide polymorphisms and a 80 kb region of recombination, also gaining Tn1549 and Tn916, transposons conferring resistance to vancomycin and tetracycline respectively. The genomic dissection of this new clone presented here underscores the propensity of the hospital E. faecium lineage to change, presumably in response to the specific conditions of hospital and healthcare environments.


July 7, 2019  |  

RelA mutant Enterococcus faecium with multiantibiotic tolerance arising in an immunocompromised host.

Serious bacterial infections in immunocompromised patients require highly effective antibacterial therapy for cure, and thus, this setting may reveal novel mechanisms by which bacteria circumvent antibiotics in the absence of immune pressure. Here, an infant with leukemia developed vancomycin-resistant Enterococcus faecium (VRE) bacteremia that persisted for 26 days despite appropriate antibiotic therapy. Sequencing of 22 consecutive VRE isolates identified the emergence of a single missense mutation (L152F) in relA, which constitutively activated the stringent response, resulting in elevated baseline levels of the alarmone guanosine tetraphosphate (ppGpp). Although the mutant remained susceptible to both linezolid and daptomycin in clinical MIC testing and during planktonic growth, it demonstrated tolerance to high doses of both antibiotics when growing in a biofilm. This biofilm-specific gain in resistance was reflected in the broad shift in transcript levels caused by the mutation. Only an experimental biofilm-targeting ClpP-activating antibiotic was able to kill the mutant strain in an established biofilm. The relA mutation was associated with a fitness trade-off, forming smaller and less-well-populated biofilms on biological surfaces. We conclude that clinically relevant relA mutations can emerge during prolonged VRE infection, causing baseline activation of the stringent response, subsequent antibiotic tolerance, and delayed eradication in an immunocompromised state.The increasing prevalence of antibiotic-resistant bacterial pathogens is a major challenge currently facing the medical community. Such pathogens are of particular importance in immunocompromised patients as these individuals may favor emergence of novel resistance determinants due to lack of innate immune defenses and intensive antibiotic exposure. During the course of chemotherapy, a patient developed prolonged bacteremia with vancomycin-resistant Enterococcus faecium that failed to clear despite multiple front-line antibiotics. The consecutive bloodstream isolates were sequenced, and a single missense mutation identified in the relA gene, the mediator of the stringent response. Strains harboring the mutation had elevated baseline levels of the alarmone and displayed heightened resistance to the bactericidal activity of multiple antibiotics, particularly in a biofilm. Using a new class of compounds that modulate ClpP activity, the biofilms were successfully eradicated. These data represent the first clinical emergence of mutations in the stringent response in vancomycin-resistant entereococci. Copyright © 2017 Honsa et al.


July 7, 2019  |  

Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization.© 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


July 7, 2019  |  

Outbreak of KPC-2-producing Enterobacteriaceae caused by clonal dissemination of Klebsiella pneumoniae ST307 carrying an IncX3-type plasmid harboring a truncated Tn4401a.

Over a 5-month period between the end of June and the beginning of November in 2015, a KPC-producing Enterobacteriaceae outbreak occurred in a general hospital in Busan, South Korea, being associated with a total of 50 clinical isolates from 47 patients. Multilocus sequence typing and pulsed-field gel electrophoresis were carried out for strain typing and whole-genome sequencing was performed to characterize the plasmids. A clonal spread of K. pneumoniae sequence type 307 (ST307) carrying a self-transferable IncX3-type plasmid harboring blaKPC-2 was responsible for the outbreak. Sporadic emergence of K. pneumoniae ST697 carrying an IncFII-type plasmid and a ST11 isolate harboring a small plasmid devoid of any known origin of replication were observed to be associated with blaKPC-3, but no further dissemination of these strains was identified. The results indicated a healthcare-associated infection associated with a blaKPC-harboring plasmid dissemination and a clonal spread of KPC-producing Enterobacteriaceae. Copyright © 2016 Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.