Menu
July 7, 2019

Prognostic significance of novel katG mutations in Mycobacterium tuberculosis

By using whole genome sequencing (WGS), researchers are beginning to understand the genetic diversity of Mycobacterium tuberculosis (MTB) and its consequences for the diagnosis of multidrug-resistant tuberculosis (MDR–TB) on a genomic scale. The Global Consortium for Drug-resistant TB Diagnostics (GCDD) conducted a genome scale variant analyses of 366 clinical MTB genomes (mostly MDR/XDR [extensively drug resistant]) from four countries in order to inform the development of rapid molecular diagnostics. This project has been extended by performing an evolutionary analysis of isoniazid (INH)-resistant isolates for prognostic purposes.


July 7, 2019

Ceftriaxone-resistant Salmonella enterica serotype Typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M-15 gene on a novel IncHI2 plasmid.

Multidrug-resistant bacteria pose a major challenge to the clinical management of infections in resource-poor settings. Although nontyphoidal Salmonella (NTS) bacteria cause predominantly enteric self-limiting illness in developed countries, NTS is responsible for a huge burden of life-threatening bloodstream infections in sub-Saharan Africa. Here, we characterized nine S. Typhimurium isolates from an outbreak involving patients who initially failed to respond to ceftriaxone treatment at a referral hospital in Kenya. These Salmonella enterica serotype Typhimurium isolates were resistant to ampicillin, chloramphenicol, cefuroxime, ceftriaxone, aztreonam, cefepime, sulfamethoxazole-trimethoprim, and cefpodoxime. Resistance to ß-lactams, including to ceftriaxone, was associated with carriage of a combination of blaCTX-M-15, blaOXA-1, and blaTEM-1 genes. The genes encoding resistance to heavy-metal ions were borne on the novel IncHI2 plasmid pKST313, which also carried a pair of class 1 integrons. All nine isolates formed a single clade within S. Typhimurium ST313, the major clone of an ongoing invasive NTS epidemic in the region. This emerging ceftriaxone-resistant clone may pose a major challenge in the management of invasive NTS in sub-Saharan Africa. Copyright © 2015, Kariuki et al.


July 7, 2019

Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40.

Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type.We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a number of phenotypic assays including resistance profiling, formation of biofilm and utilisation of carbon sources. We generated the first circular closed reference genome of an E. faecalis isolate D32 of animal origin and compared it with the genomes of other reference strains. D32 was used as a template for detailed WGS comparisons of high-quality draft genomes of 14 ST40 isolates. Genomic and phylogenetic analyses suggest a high level of similarity regarding the core genome, also demonstrated by similar carbon utilisation patterns. Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source. Further analyses of mobile genetic elements (MGE) revealed genomic diversity owed to: (1) a modularly structured pathogenicity island; (2) a site-specifically integrated and previously unknown genomic island of 138 kb in two strains putatively involved in exopolysaccharide synthesis; and (3) isolate-specific plasmid and phage patterns. Moreover, we used different cell-biological and animal experiments to compare the isolate D32 with a closely related ST40 endocarditis isolate whose draft genome sequence was also generated. D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro).Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.


July 7, 2019

Whole-genome sequencing for comparative genomics and de novo genome assembly.

Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).


July 7, 2019

Complete genome sequence of the clinical Beijing-like strain Mycobacterium tuberculosis 323 using the PacBio real-time sequencing platform.

We report here the whole-genome sequence of the multidrug-resistant Beijing-like strain Mycobacterium tuberculosis 323, isolated from a 15-year-old female patient who died shortly after the initiation of second-line drug treatment. This strain is representative of the Beijing-like isolates from Colombia, where this lineage is becoming a public health concern. Copyright © 2015 Rodríguez et al.


July 7, 2019

Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events.

The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.


July 7, 2019

Genome resequencing of the virulent and multidrug-resistant reference strain Clostridium difficile 630.

We resequenced the complete genome of the virulent and multidrug-resistant pathogen Clostridium difficile strain 630. A combination of single-molecule real-time and Illumina sequencing technology revealed the presence of an additional rRNA gene cluster, additional tRNAs, and the absence of a transposon in comparison to the published and reannotated genome sequence. Copyright © 2015 Riedel et al.


July 7, 2019

Resources for genetic and genomic analysis of emerging pathogen Acinetobacter baumannii.

Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen’s success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat.Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Complete genome sequencing of a multidrug-resistant and human-invasive Salmonella enterica serovar Typhimurium strain of the emerging sequence type 213 genotype.

Salmonella enterica subsp. enterica serovar Typhimurium strain YU39 was isolated in 2005 in the state of Yucatán, Mexico, from a human systemic infection. The YU39 strain is representative of the multidrug-resistant emergent sequence type 213 (ST213) genotype. The YU39 complete genome is composed of a chromosome and seven plasmids. Copyright © 2015 Calva et al.


July 7, 2019

Surveillance of Klebsiella pneumoniae and antibiotic resistance a retrospective and comparative study through a period in Nepal

Among the Enterobacteriacea Klebsiella pneumoniae is for the most part obtained from clinical samples and most probable cause of a typical form of primary pneumonia. It can also responsible for a variety of extrapulmonary infections, counting enteritis and meningitis in infants, urinary tract infections in children and adults and septicaemia in all age groups. Like wise these pathogens are significant cause of hospital acquired infections right through the world. The remarkable increase in the prevalence of antibiotic resistance in bacteria noticed in recent years represents a considerable challenge to public health microbiology worldwide. Klebsiellae have a tendency to possess antibiotic resistant plasmids; as a result, infections with multiple antibiotic-resistant strains can be likely. Only some degree of studies had been accounted in this regard from Nepal. The study was performed from January 1999 to March 2001. To come upon the existing dated antibiotic resistance pattern of Klebsiella pneumoniae. The study was carried out at TUTH laboratory with the objectives to ascertain the prevalence of Klebsiella pneumoniae in conjunction with to calculate the significance antibiotic resistance correlation between various antibiotics. By which the later 15 years analysis of antibiotic resistance was evaluated with comparison to this study.In this scrutiny the result was established that the numbers of total isolates including both klebsiella pneumoniae and other Kebsiella species were 62 from urine samples, 78 from pus samples and 96 from sputum samples and 34 from other miscellaneous samples. In this study positive culture for Klebsiella pneumoniae was 32.83% for sputum samples, 23.62.% for urine samples and 24.57% for pus samples. Majority of the strains isolated were sensitive to ß- lactamases, Floroquinolones, Aminoglycosides, Tetracycline and Cotrimoxazole, combined antibiotics. The current review study from 1999 to 2014 discloses the frequency of infections due to klebsiella pneumoniae strains in the hospitalized patients and their tendency towards antibiotic resistance was on the increase. Large quantity of antibiotics exploited for human therapy has resulted in the selection of pathogenic bacteria resistant to multiple antimicrobial drugs. This has become a vital clinical and infection control challenge, particularly in resource-limited settings with far above the ground a raising rate of antimicrobial resistance.


July 7, 2019

Novel recA-independent horizontal gene transfer in Escherichia coli K-12.

In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F’-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10-12 CFU/recipient per hour.


July 7, 2019

First complete genome sequences of Staphylococcus aureus subsp. aureus Rosenbach 1884 (DSM 20231T), determined by PacBio Single-Molecule Real-Time Technology.

The first complete genome sequences of Staphylococcus aureus subsp. aureus Rosenbach 1884 strain DSM 20231(T), the type strain of the bacterium causing staphylococcal disease, were determined using PacBio RS II. The sequences represent the chromosome (2,755,072 bp long; G+C content, 32.86%) and a plasmid (27,490 bp long; G+C content, 30.69%). Copyright © 2015 Shiroma et al.


July 7, 2019

Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis.

Multidrug resistance, strong side effects, and compliance problems in TB chemotherapy mandate new ways to kill Mycobacterium tuberculosis (Mtb). Here we show that deletion of the gene encoding homoserine transacetylase (metA) inactivates methionine and S-adenosylmethionine (SAM) biosynthesis in Mtb and renders this pathogen exquisitely sensitive to killing in immunocompetent or immunocompromised mice, leading to rapid clearance from host tissues. Mtb ?metA is unable to proliferate in primary human macrophages, and in vitro starvation leads to extraordinarily rapid killing with no appearance of suppressor mutants. Cell death of Mtb ?metA is faster than that of other auxotrophic mutants (i.e., tryptophan, pantothenate, leucine, biotin), suggesting a particularly potent mechanism of killing. Time-course metabolomics showed complete depletion of intracellular methionine and SAM. SAM depletion was consistent with a significant decrease in methylation at the DNA level (measured by single-molecule real-time sequencing) and with the induction of several essential methyltransferases involved in biotin and menaquinone biosynthesis, both of which are vital biological processes and validated targets of antimycobacterial drugs. Mtb ?metA could be partially rescued by biotin supplementation, confirming a multitarget cell death mechanism. The work presented here uncovers a previously unidentified vulnerability of Mtb-the incapacity to scavenge intermediates of SAM and methionine biosynthesis from the host. This vulnerability unveils an entirely new drug target space with the promise of rapid killing of the tubercle bacillus by a new mechanism of action.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.