Menu
September 22, 2019

The transducer-like protein Tlp12 of Campylobacter jejuni is involved in glutamate and pyruvate chemotaxis.

Campylobacter jejuni is one of the most common bacterial causes of food-borne enteritis worldwide. Chemotaxis in C. jejuni is known to be critical for the successful colonization of the host and key for the adaptation of the microbial species to different host environments. In C. jejuni, chemotaxis is regulated by a complex interplay of 13 or even more different chemoreceptors, also known as transducer-like proteins (Tlps). Recently, a novel chemoreceptor gene, tlp12, was described and found to be present in 29.5% of the investigated C. jejuni strains.In this study, we present a functional analysis of Tlp12 with the aid of a tlp12 knockout mutant of the C. jejuni strain A17. Substrate specificity was investigated by capillary chemotaxis assays and revealed that Tlp12 plays an important role in chemotaxis towards glutamate and pyruvate. Moreover, the ?tlp12 mutant shows increased swarming motility in soft agar assays, an enhanced invasion rate into Caco-2 cells and an increased autoagglutination rate. The growth rate was slightly reduced in the ?tlp12 mutant. The identified phenotypes were in partial restored by complementation with the wild type gene. Tlp12-harboring C. jejuni strains display a strong association with chicken, whose excreta are known to contain high glutamate levels.TLP12 is a chemoreceptor for glutamate and pyruvate recognition. Deletion of tlp12 has an influence on distinct physiological features, such as growth rate, swarming motility, autoagglutination and invasiveness.


September 22, 2019

Comparative genome analysis of jujube witches’-broom Phytoplasma, an obligate pathogen that causes jujube witches’-broom disease.

JWB phytoplasma is a kind of insect-transmitted and uncultivable bacterial plant pathogen causeing a destructive Jujube disease. To date, no genome information about JWB phytoplasma has been published, which hindered its characterization at genomic level. To understand its pathogenicity and ecology, the genome of a JWB phytoplasma isolate jwb-nky was sequenced and compared with other phytoplasmas enabled us to explore the mechanisms of genomic rearrangement.The complete genome sequence of JWB phytoplasma (jwb-nky) was determined, which consisting of one circular chromosome of 750,803 bp with a GC content of 23.3%. 694 protein-encoding genes, 2 operons for rRNA genes and 31 tRNA genes as well as 4 potential mobile units (PMUs) containing clusters of DNA repeats were identified. Based on PHIbaes analysis, a large number of genes were genome-specific and approximately 13% of JWB phytoplasma genes were predicted to be associated with virulence. Although transporters for maltose, dipeptides/oligopeptides, spermidine/putrescine, cobalt, Mn/Zn and methionine were identified, KEGG pathway analysis revealed the reduced metabolic capabilities of JWB phytoplasma. Comparative genome analyses between JWB phytoplasma and other phytoplasmas shows the occurrence of large-scale gene rearrangements. The low synteny with other phytoplasmas indicated that the expansion of multiple gene families/duplication probably occurred separately after differentiation.In this study, the complete genome sequence of a JWB phytoplasma isolate jwb-nky that causing JWB disease was reported for the first time and a number of species-specific genes were identified in the genome. The study enhanced our understandings about genomic basis and the pathogenicity mechanism of this pathogen, which will aid in the development of improved strategies for efficient management of JWB diseases.


September 22, 2019

Genes significantly associated with lineage II food isolates of Listeria monocytogenes.

Listeria monocytogenes is a widespread foodborne pathogen that can cause listeriosis, a potentially fatal infection. L. monocytogenes is subdivided into four phylogenetic lineages, with the highest incidence of listeriosis occurring within lineage I followed by lineage II. Strains of L. monocytogenes differ in their phenotypic characteristics, including virulence. However, the genetic bases for these observed differences are not well understood, and current efforts to monitor L. monocytogenes in food consider all strains to be equally virulent. We use a comparative genomics approach to identify genes and single nucleotide polymorphisms (SNPs) in 174 clinical and food isolates of L. monocytogenes that potentially contribute to virulence or the capacity to adapt to food environments.No SNPs are significantly associated with food or clinical isolates. No genes are significantly associated with food or clinical isolates from lineage I, but eight genes consisting of multiple homologues are associated with lineage II food isolates. These include three genes which encode hypothetical proteins, the cadmium resistance genes cadA and cadC, the multi-drug resistance gene ebrB, a quaternary ammonium compound resistance gene qac, and a regulatory gene. All eight genes are plasmid-borne, and most closed L. monocytogenes plasmids carry at least five of the genes (24/27). In addition, plasmids are more frequently associated with lineage II food isolates than with lineage II clinical isolates.We identify eight genes that are significantly associated with food isolates in lineage II. Interestingly, the eight genes are virtually absent in lineage II outbreak isolates, are composed of homologues which show a nonrandom distribution among lineage I serotypes, and the sequences are highly conserved across 27 closed Listeria plasmids. The functions of these genes should be explored further and will contribute to our understanding of how L. monocytogenes adapts to the host and food environments. Moreover, these genes may also be useful as markers for risk assessment models of either pathogenicity or the ability to proliferate in food and the food processing environment.


September 22, 2019

The linear mitochondrial genome of the quarantine chytrid Synchytrium endobioticum; insights into the evolution and recent history of an obligate biotrophic plant pathogen.

Chytridiomycota species (chytrids) belong to a basal lineage in the fungal kingdom. Inhabiting terrestrial and aquatic environments, most are free-living saprophytes but several species cause important diseases: e.g. Batrachochytrium dendrobatidis, responsible for worldwide amphibian decline; and Synchytrium endobioticum, causing potato wart disease. S. endobioticum has an obligate biotrophic lifestyle and isolates can be further characterized as pathotypes based on their virulence on a differential set of potato cultivars. Quarantine measures have been implemented globally to control the disease and prevent its spread. We used a comparative approach using chytrid mitogenomes to determine taxonomical relationships and to gain insights into the evolution and recent history of introductions of this plant pathogen.We assembled and annotated the complete mitochondrial genome of 30 S. endobioticum isolates and generated mitochondrial genomes for five additional chytrid species. The mitochondrial genome of S. endobioticum is linear with terminal inverted repeats which was validated by tailing and PCR amplifying the telomeric ends. Surprisingly, no conservation in organisation and orientation of mitochondrial genes was observed among the Chytridiomycota except for S. endobioticum and its sister species Synchytrium microbalum. However, the mitochondrial genome of S. microbalum is circular and comprises only a third of the 72.9 Kbp found for S. endobioticum suggesting recent linearization and expansion. Four mitochondrial lineages were identified in the S. endobioticum mitochondrial genomes. Several pathotypes occur in different lineages, suggesting that these have emerged independently. In addition, variations for polymorphic sites in the mitochondrial genome of individual isolates were observed demonstrating that S. endobioticum isolates represent a community of different genotypes. Such communities were shown to be complex and stable over time, but we also demonstrate that the use of semi-resistant potato cultivars triggers a rapid shift in the mitochondrial haplotype associated with increased virulence.Mitochondrial genomic variation shows that S. endobioticum has been introduced into Europe multiple times, that several pathotypes emerged multiple times, and that isolates represent communities of different genotypes. Our study represents the most comprehensive dataset of chytrid mitogenomes, which provides new insights into the extraordinary dynamics and evolution of mitochondrial genomes involving linearization, expansion and reshuffling.


September 22, 2019

Draft genome sequence of wild Prunus yedoensis reveals massive inter-specific hybridization between sympatric flowering cherries.

Hybridization is an important evolutionary process that results in increased plant diversity. Flowering Prunus includes popular cherry species that are appreciated worldwide for their flowers. The ornamental characteristics were acquired both naturally and through artificially hybridizing species with heterozygous genomes. Therefore, the genome of hybrid flowering Prunus presents important challenges both in plant genomics and evolutionary biology.We use long reads to sequence and analyze the highly heterozygous genome of wild Prunus yedoensis. The genome assembly covers >?93% of the gene space; annotation identified 41,294 protein-coding genes. Comparative analysis of the genome with 16 accessions of six related taxa shows that 41% of the genes were assigned into the maternal or paternal state. This indicates that wild P. yedoensis is an F1 hybrid originating from a cross between maternal P. pendula f. ascendens and paternal P. jamasakura, and it can be clearly distinguished from its confusing taxon, Yoshino cherry. A focused analysis of the S-locus haplotypes of closely related taxa distributed in a sympatric natural habitat suggests that reduced restriction of inter-specific hybridization due to strong gametophytic self-incompatibility is likely to promote complex hybridization of wild Prunus species and the development of a hybrid swarm.We report the draft genome assembly of a natural hybrid Prunus species using long-read sequencing and sequence phasing. Based on a comprehensive comparative genome analysis with related taxa, it appears that cross-species hybridization in sympatric habitats is an ongoing process that facilitates the diversification of flowering Prunus.


September 22, 2019

Genomic approaches for studying crop evolution.

Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.


September 22, 2019

Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix.

The date palm tree is a commercially important member of the genus Phoenix whose 14 species are dioecious with separate male and female individuals. To identify sex determining genes we sequenced the genomes of 15 female and 13 male Phoenix trees representing all 14 species. We identified male-specific sequences and extended them using phased single-molecule sequencing or BAC clones. We observed that only four genes contained sequences conserved in all analyzed Phoenix males. Most of these sequences showed similarity to a single genomic locus in the closely related monoecious oil palm. CYP703 and GPAT3, two single copy genes present in males and critical for male flower development in other monocots, were absent in females. A LOG-like gene appears translocated into the Y-linked region and is suggested to play a role in suppressing female flowers. Our data are consistent with a two-mutation model for the evolution of dioecy in Phoenix.


September 22, 2019

Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum.

Gut microbiota of breast-fed infants are generally rich in bifidobacteria. Recent studies show that infant gut-associated bifidobacteria can assimilate human milk oligosaccharides (HMOs) specifically among the gut microbes. Nonetheless, little is known about how bifidobacterial-rich communities are shaped in the gut. Interestingly, HMOs assimilation ability is not related to the dominance of each species. Bifidobacterium longum susbp. longum and Bifidobacterium breve are commonly found as the dominant species in infant stools; however, they show limited HMOs assimilation ability in vitro. In contrast, avid in vitro HMOs consumers, Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, are less abundant in infant stools. In this study, we observed altruistic behaviour by B. bifidum when incubated in HMOs-containing faecal cultures. Four B. bifidum strains, all of which contained complete sets of HMO-degrading genes, commonly left HMOs degradants unconsumed during in vitro growth. These strains stimulated the growth of other Bifidobacterium species when added to faecal cultures supplemented with HMOs, thereby increasing the prevalence of bifidobacteria in faecal communities. Enhanced HMOs consumption by B. bifidum-supplemented cultures was also observed. We also determined the complete genome sequences of B. bifidum strains JCM7004 and TMC3115. Our results suggest B. bifidum-mediated cross-feeding of HMOs degradants within bifidobacterial communities.


September 22, 2019

Ring synthetic chromosome V SCRaMbLE.

Structural variations (SVs) exert important functional impacts on biological phenotypic diversity. Here we show a ring synthetic yeast chromosome V (ring_synV) can be used to continuously generate complex genomic variations and improve the production of prodeoxyviolacein (PDV) by applying Synthetic Chromosome Recombination and Modification by LoxP-mediated Evolution (SCRaMbLE) in haploid yeast cells. The SCRaMbLE of ring_synV generates aneuploid yeast strains with increased PDV productivity, and we identify aneuploid chromosome I, III, VI, XII, XIII, and ring_synV. The neochromosome of SCRaMbLEd ring_synV generated more unbalanced forms of variations, including duplication, insertions, and balanced forms of translocations and inversions than its linear form. Furthermore, of the 29 novel SVs detected, 11 prompted the PDV biosynthesis; and the deletion of uncharacterized gene YER182W is related to the improvement of the PDV. Overall, the SCRaMbLEing ring_synV embraces the evolution of the genome by modifying the chromosome number, structure, and organization, identifying targets for phenotypic comprehension.


September 22, 2019

Repeated inversions within a pannier intron drive diversification of intraspecific colour patterns of ladybird beetles.

How genetic information is modified to generate phenotypic variation within a species is one of the central questions in evolutionary biology. Here we focus on the striking intraspecific diversity of >200 aposematic elytral (forewing) colour patterns of the multicoloured Asian ladybird beetle, Harmonia axyridis, which is regulated by a tightly linked genetic locus h. Our loss-of-function analyses, genetic association studies, de novo genome assemblies, and gene expression data reveal that the GATA transcription factor gene pannier is the major regulatory gene located at the h locus, and suggest that repeated inversions and cis-regulatory modifications at pannier led to the expansion of colour pattern variation in H. axyridis. Moreover, we show that the colour-patterning function of pannier is conserved in the seven-spotted ladybird beetle, Coccinella septempunctata, suggesting that H. axyridis’ extraordinary intraspecific variation may have arisen from ancient modifications in conserved elytral colour-patterning mechanisms in ladybird beetles.


September 22, 2019

Novel clade C-I Clostridium difficile strains escape diagnostic tests, differ in pathogenicity potential and carry toxins on extrachromosomal elements.

The population structure of Clostridium difficile currently comprises eight major genomic clades. For the highly divergent C-I clade, only two toxigenic strains have been reported, which lack the tcdA and tcdC genes and carry a complete locus for the binary toxin (CDT) next to an atypical TcdB monotoxin pathogenicity locus (PaLoc). As part of a routine surveillance of C. difficile in stool samples from diarrheic human patients, we discovered three isolates that consistently gave negative results in a PCR-based screening for tcdC. Through phenotypic assays, whole-genome sequencing, experiments in cell cultures, and infection biomodels we show that these three isolates (i) escape common laboratory diagnostic procedures, (ii) represent new ribotypes, PFGE-types, and sequence types within the Clade C-I, (iii) carry chromosomal or plasmidal TcdBs that induce classical or variant cytopathic effects (CPE), and (iv) cause different levels of cytotoxicity and hamster mortality rates. These results show that new strains of C. difficile can be detected by more refined techniques and raise questions on the origin, evolution, and distribution of the toxin loci of C. difficile and the mechanisms by which this emerging pathogen causes disease.


September 22, 2019

Asymmetric processing of DNA ends at a double-strand break leads to unconstrained dynamics and ectopic translocation.

Multiple pathways regulate the repair of double-strand breaks (DSBs) to suppress potentially dangerous ectopic recombination. Both sequence and chromatin context are thought to influence pathway choice between non-homologous end-joining (NHEJ) and homology-driven recombination. To test the effect of repetitive sequences on break processing, we have inserted TG-rich repeats on one side of an inducible DSB at the budding yeast MAT locus on chromosome III. Five clustered Rap1 sites within a break-proximal TG repeat are sufficient to block Mre11-Rad50-Xrs2 recruitment, impair resection, and favor elongation by telomerase. The two sides of the break lose end-to-end tethering and show enhanced, uncoordinated movement. Only the TG-free side is resected and shifts to the nuclear periphery. In contrast to persistent DSBs without TG repeats that are repaired by imprecise NHEJ, nearly all survivors of repeat-proximal DSBs repair the break by a homology-driven, non-reciprocal translocation from ChrIII-R to ChrVII-L. This suppression of imprecise NHEJ at TG-repeat-flanked DSBs requires the Uls1 translocase activity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019

Genome sequence analysis of Zooshikella ganghwensis strain VG4 and its potential for the synthesis of antimicrobial metabolites.

With antimicrobial resistance on the rise, the discovery of new compounds with novel structural scaffolds exhibiting antimicrobial properties has become an important area of research. Such compounds can serve as starting points for the development of new antimicrobials. In this report, we present the draft genome sequence of the Zooshikella ganghwensis strain VG4, isolated from Red Sea sediments, that produces metabolites with antimicrobial properties. A genomic analysis reveals that it carries at least five gene clusters that have the potential to direct biosynthesis of bioactive secondary metabolites such as polyketides and nonribosomal peptides. By using in-silico approaches, we predict the structure of these metabolites.


September 22, 2019

Closed genome and comparative phylogenetic analysis of the clinical multidrug resistant Shigella sonnei strain 866.

Shigella sonnei is responsible for the majority of shigellosis infections in the US with over 500,000 cases reported annually. Here, we present the complete genome of the clinical multidrug resistant (MDR) strain 866, which is highly susceptible to bacteriophage infections. The strain has a circular chromosome of 4.85?Mb and carries a 113?kb MDR plasmid. This IncB/O/K/Z-type plasmid, termed p866, confers resistance to five different classes of antibiotics including ß-lactamase, sulfonamide, tetracycline, aminoglycoside, and trimethoprim. Comparative analysis of the plasmid architecture and gene inventory revealed that p866 shares its plasmid backbone with previously described IncB/O/K/Z-type Shigella spp. and Escherichia coli plasmids, but is differentiated by the insertion of antibiotic resistance cassettes, which we found associated with mobile genetic elements such as Tn3, Tn7, and Tn10. A whole genome-derived phylogenetic reconstruction showed the evolutionary relationships of S. sonnei strain 866 and the four established Shigella species, highlighting the clonal nature of S. sonnei.


September 22, 2019

Exploring the limits and causes of plastid genome expansion in volvocine green algae.

Plastid genomes are not normally celebrated for being large. But researchers are steadily uncovering algal lineages with big and, in rare cases, enormous plastid DNAs (ptDNAs), such as volvocine green algae. Plastome sequencing of five different volvocine species has revealed some of the largest, most repeat-dense plastomes on record, including that of Volvox carteri (~525?kb). Volvocine algae have also been used as models for testing leading hypotheses on organelle genome evolution (e.g., the mutational hazard hypothesis), and it has been suggested that ptDNA inflation within this group might be a consequence of low mutation rates and/or the transition from a unicellular to multicellular existence. Here, we further our understanding of plastome size variation in the volvocine line by examining the ptDNA sequences of the colonial species Yamagishiella unicocca and Eudorina sp. NIES-3984 and the multicellular Volvox africanus, which are phylogenetically situated between species with known ptDNA sizes. Although V. africanus is closely related and similar in multicellular organization to V. carteri, its ptDNA was much less inflated than that of V. carteri. Synonymous- and noncoding-site nucleotide substitution rate analyses of these two Volvox ptDNAs suggest that there are drastically different plastid mutation rates operating in the coding versus intergenic regions, supporting the idea that error-prone DNA repair in repeat-rich intergenic spacers is contributing to genome expansion. Our results reinforce the idea that the volvocine line harbors extremes in plastome size but ultimately shed doubt on some of the previously proposed hypotheses for ptDNA inflation within the lineage.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.