Menu
July 7, 2019

Complete genome sequence of Deinococcus actinosclerus BM2(T), a bacterium with Gamma-radiation resistance isolated from soil in South Korea.

A Gram-positive, short-rod shaped and non-motile bacterium Deinococcus actinosclerus BM2(T), resistant to gamma and UV radiation, was isolated from a soil sample collected in South Korea. Strain BM2(T) showed high resistance to gamma radiation with D10 value of 9 kGy. The complete genome of D. actinosclerus BM2(T) consists of a single chromosome (3,264,334bp). The genome features showed the presence of intracellular proteases that help to eliminate radiation-induced ROS during recovery from ionizing radiation damage. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Detection of translocatable units in a blaCTX-M-15 extended-spectrum ß-lactamase-producing ST131 Escherichia coli isolate using a hybrid sequencing approach.

Sir,Escherichia coli sequence type 131 (ST131) producing CTX- M-type [3-lactamases are the most common extended-spectrum [3-lactamase (ESBL)-producing strains and are of high virulence potential. In particular, the blal-;X.M.[5 gene is often encoded on a conjugative plasmid and less frequently on the chromo- some. The presence of identical bluCTX.M.[5 alleles on both the chromosome and on a plasmid in the same strain has been reported [1], suggesting transfer ofthese genes between these two locations.


July 7, 2019

Complete genome sequence of a psychotrophic Arthrobacter strain A3 (CGMCC 1.8987), a novel long-chain hydrocarbons producer.

Arthrobacter strain A3, a psychotrophic bacterium isolated from the Tian Shan Mountain of China, can degrade the cellulose and synthesis the long-chain hydrocarbons efficiently in low temperature. Here we report the complete genome sequence of this bacterium. The complete genome sequence of Arthrobacter strain A3, consisting of a cycle chromosome with a size of 4.26 Mbp and a cycle plasmid with a size of 194kbp. In this genome, a hydrocarbon biosynthesis gene cluster (oleA, oleB/oleC and oleD) was identified. To resistant the extreme environment, this strain contains a unique mycothiol-biosynthetic pathway (mshA-D), which has not been found in other Arthrobacter species before. The availability of this genome sequence allows us to investigate the genetic basis of adaptation to growth in a nutrient-poor permafrost environment and to evaluate of the biofuel-synthetic potential of this species. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Dissemination of the mcr-1 colistin resistance gene.

Since our first report on plasmid- mediated colistin resistance gene mcr-1,1 strains previously collected in seven countries (Denmark, the Netherlands, Laos, Nigeria, Thailand, France, and the UK) have been found to carry mcr-1.2–6 Furthermore, the sequences in GenBank show that mcr-1 might also be circulating in Portugal and Malaysia. The earliest mcr-1- positive strain was collected from cattle in France in 2008 (GenBank accession number LMBK01000308). These findings confirm our initial concern that mcr-1 could have already disseminated worldwide.


July 7, 2019

The Atlantic salmon genome provides insights into rediploidization.

The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.


July 7, 2019

Conservation of the essential genome among Caulobacter and Brevundimonas species.

When the genomes of Caulobacter isolates NA1000 and K31 were compared, numerous genome rearrangements were observed. In contrast, similar comparisons of closely related species of other bacterial genera revealed nominal rearrangements. A phylogenetic analysis of the 16S rRNA indicated that K31 is more closely related to Caulobacter henricii CB4 than to other known Caulobacters. Therefore, we sequenced the CB4 genome and compared it to all of the available Caulobacter genomes to study genome rearrangements, discern the conservation of the NA1000 essential genome, and address concerns about using 16S rRNA to group Caulobacter species. We also sequenced the novel bacteria, Brevundimonas DS20, a representative of the genus most closely related to Caulobacter and used it as part of an outgroup for phylogenetic comparisons. We expected to find that there would be fewer rearrangements when comparing more closely related Caulobacters. However, we found that relatedness was not correlated with the amount of observed “genome scrambling.” We also discovered that nearly all of the essential genes previously identified for C. crescentus are present in the other Caulobacter genomes and in the Brevundimonas genomes as well. However, a few of these essential genes were only found in NA1000, and some were missing in a combination of one or more species, while other proteins were 100 % identical across species. Also, phylogenetic comparisons of highly conserved genomic regions revealed clades similar to those identified by 16S rRNA-based phylogenies, verifying that 16S rRNA sequence comparisons are a valid method for grouping Caulobacters.


July 7, 2019

Cloning of the ?-secalin gene family in a wheat 1BL/1RS translocation line using BAC clone sequencing

Wheat 1BL/1RS translocation lines are planted around the world for their disease resistance and high yield. Most of them are poor in bread making, which is partially caused by ?-secalins that are encoded by the ?-secalin gene family, which is located on the short arm of rye chromosome 1R (1RS). However, information on the structure and evolution of the ?-secalin gene family is still limited.


July 7, 2019

Complete genome sequence of Rufibacter sp. DG31D, a bacterium resistant to gamma and UV radiation toxicity

The ionizing radiation toxicity becomes a major concern for the modern world, recent years, several special interest has been given to the research for the radiation resistant and the mechanisms of which the radiation resistant bacteria survive after the irradiation. In the current study, we have isolated strain DG31D was isolated from gamma ray-irradiated soil sample and showed resistant to gamma and UV radiation. The aim of this study is to understanding the radiation resistant mechanisms and their genomic features of the strain DG31D, which can be potentially used for the biotechnological application to degrade harmful soil contamination near the nuclear power stations and other radiation-affected areas. Strain DG31D showed resistant to UV and gamma radiation with D10 value of 10 kGy. The genome comprised of 4,820,793 bp with the G+C content of 51.4%. It contains the genomic features of enzymes involved in the nucleotide excision repair (NER) pathway that protect the damaged DNA.


July 7, 2019

Genome sequence of the nicotine-degrading Agrobacterium tumefaciens S33.

Agrobacterium tumefaciens S33 is capable of growing with nicotine as the sole source of carbon and nitrogen, and has the potential to dispose of tobacco wastes and transform nicotine into functionalized pyridines intermediates, which are important precursors for some valuable drugs and insecticides. Here we report the complete genome sequence of strain S33 and predict the gene cluster involved in nicotine catabolism according to the annotation. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Gene duplication confers enhanced expression of 27-kDa ?-zein for endosperm modification in quality protein maize.

The maizeopaque2(o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection foro2modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa ?-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (q?27) affecting expression of 27-kDa ?-zein.q?27was mapped to the same region as the majoro2 modifier(o2 modifier1) on chromosome 7 near the 27-kDa ?-zein locus.q?27resulted from a 15.26-kb duplication at the 27-kDa ?-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure ofq?27appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa ?-zein is critical for endosperm modification in QPM,q?27is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding.


July 7, 2019

Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate

Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components. Comparative analysis of MP2 with other Lactobacillus species, identified several unique genes of L. kunkeei MP2 related with metabolism, biofilm generation, survival under stress conditions, and mobile genetic elements (MGEs). Discussion. The presence of multiple mobile genetic elements, including phage sequences, suggest a high degree of genetic variability in L. kunkeei. Its versatility and ability to survive in different ecological niches (bee guts, flowers, fruits among others) could be given by its genetic capacity to change and adapt to different environments. L. kunkeei could be a new source of Lactobacillus with beneficial properties. Indeed, L. kunkeei MP2 could play an important role in honey bee nutrition through the synthesis of components as isoprenoids.


July 7, 2019

Single-molecule sequencing assists genome assembly improvement and structural variation inference.

Dear editor, The single-molecule real-time (SMRT) sequencing platform presented by Pacific Biosciences (PacBio) is regarded as a third-generation sequencing technology (Eid et al., 2009, Roberts et al., 2013). PacBio delivers long reads from several to tens of kilobases (kbs), which are ideal for filling unsequenced gaps due to unusual sequence contexts, such as high-GC content or repeat-rich regions (Bashir et al., 2012, Berlin et al., 2015, Chaisson et al., 2015). PacBio long reads are also favorable for detecting large DNA fragments harboring structural variations (SVs), such as inversions, translocations, duplications, and large insertions/deletions (indels) (Ritz et al., 2010, English et al., 2014). However, one drawback of PacBio is the high error rate of base calling for single pass coverage of the genome (Au et al., 2012, Koren et al., 2012). This drawback can be mitigated by increasing sequencing coverage to achieve high consensus accuracy, but the requirements may be prohibitive for the de novo assembly of large- or medium-size genomes using only PacBio when considering both budgetary and computational costs. Alternatively, PacBio may be used for assembly improvement of near-finished reference genomes, especially for filling gaps in which unsequenced bases are represented by the letter N (English et al., 2012). Here, we combined PacBio (~15x) with Illumina reads (~40x) to improve the genome assemblies of African wild (Oryza barthii) and cultivated rice (O. glaberrima), and to infer large SVs between O. barthii and O. glaberrima.


July 7, 2019

Complete genome sequences of Aerococcus christensenii CCUG 28831T, Aerococcus sanguinicola CCUG 43001T, Aerococcus urinae CCUG 36881T, Aerococcus urinaeequi CCUG 28094T, Aerococcus urinaehominis CCUG 42038 BT, and Aerococcus viridans CCUG 4311T.

Strains belonging to the genus Aerococcusare causative agents of human and animal infections, including urogenital infections, bacteremia/septicemia, and infective endocarditis. This study reports the first fully closed and complete genome sequences of six type strains belonging to the genus Aerococcususing a combination of Illumina HiSeq and PacBio sequencing technologies. Copyright © 2016 Carkaci et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.