Menu
September 22, 2019  |  

The Genome of Opium Poppy Reveals Evolutionary History of Morphinan Pathway.

Plants, as primary producers, have been playing an indispensable role in other organisms’ survival and the balance of whole ecosystem on Earth. Especially, they provide the main source of energy, food, and medicine for human beings, some of which are derived from the primary or secondary metabolites [1]. Angiosperms, with more than 300,000 species on Earth, are the largest group of land plants by far. Most agricultural crops, fruits, ornamental plants, and medicinal herbs belong to this group. The medicinal herbs are usually rich in specialized metabolites that could provide safe and valuable resources for pharmaceutical development.


September 22, 2019  |  

Cloning and characterization of short-chain N-acyl homoserine lactone-producing Enterobacter asburiae strain L1 from lettuce leaves.

In gram-negative bacteria, bacterial communication or quorum sensing (QS) is achieved using common signaling molecules known as N-acyl homoserine lactones (AHL). We have previously reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. In silico analysis of the strain L1 genome revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easIR. In this work, the 639 bp luxI homolog, encoding 212 amino acids, have been cloned and overexpressed in Escherichia coli BL21 (DE3)pLysS. The purified protein (~25 kDa) shares high similarity to several members of the LuxI family among different E asburiae strains. Our findings showed that the heterologously expressed EasI protein has activated violacein production by AHL biosensor Chromobacterium violaceum CV026 as the wild-type E. asburiae. The mass spectrometry analysis showed the production of N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone from induced E. coli harboring the recombinant EasI, suggesting that EasI is a functional AHL synthase. E. asburiae strain L1 was also shown to possess biofilm-forming characteristic activity using crystal violet binding assay. This is the first report on cloning and characterization of the luxI homolog from E. asburiae.© 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


September 22, 2019  |  

Complete genome sequence of Leuconostoc citreum EFEL2700, a host strain for transformation of pCB vectors.

Leuconostoc citreum is an important lactic acid bacterium used as a starter culture for producing kimchi, the traditional Korean fermented vegetables. An efficient host strain for plasmid transformation, L. citreum EFEL2700, was isolated from kimchi, and it has been frequently used for genetic engineering of L. citreum. In this study, we report the whole genome sequence of the strain and its genetic characteristics. Genome assembly yielded 5 contigs (1 chromosome and 4 plasmids), and the complete genome contained 1,923,830 base pairs (bp) with a G?+?C content of 39.0%. Average nucleotide identity analysis showed high homology (= 99%) to the reference strain L. citreum KM 20. The smallest plasmid (4.3 kbp) was used as an Escherichia coli shuttle vector (pCB) for heterologous gene expression, and L. citreum EFEL2700 showed the highest transformation efficiency, 6.7?×?104 CFU µg-1 DNA. Genetic analysis of the genome enabled the construction of primary metabolic pathway showing a typical hetero-type lactic acid fermentation. Notably, no core genes for primary metabolism were observed in plasmid 4 and it could be eliminated to create an efficient host for gene transformation. This report will facilitate the understanding and application of L. citreum EFEL2700 as a food-grade microbial cell factory.Copyright © 2018. Published by Elsevier B.V.


September 22, 2019  |  

Novel linezolid resistance plasmids in Enterococcus from food animals in the USA.

To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme.Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible.Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3′)-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant.To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus.


September 22, 2019  |  

Genomic characterization of carbapenemase-producing Klebsiella pneumoniae with chromosomally encoded blaNDM-1.

We report here Klebsiella pneumoniae strains carrying chromosomal blaNDM-1 in Thailand. The genomes of these two isolates include a 160-kbp insertion containing blaNDM-1, which is almost identical to that in the IncHI1B-like plasmid. Further analysis indicated that IS5-mediated intermolecular transposition and Tn3 transposase-mediated homologous recombination resulted in the integration of blaNDM-1 into the chromosome from an IncHI1B-like plasmid. The spread of this type of carbapenem-resistant Enterobacteriaceae may threaten public health and warrants further monitoring. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions.

Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain’s inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.


September 22, 2019  |  

Biparental Inheritance of Mitochondrial DNA in Humans.

Although there has been considerable debate about whether paternal mitochondrial DNA (mtDNA) transmission may coexist with maternal transmission of mtDNA, it is generally believed that mitochondria and mtDNA are exclusively maternally inherited in humans. Here, we identified three unrelated multigeneration families with a high level of mtDNA heteroplasmy (ranging from 24 to 76%) in a total of 17 individuals. Heteroplasmy of mtDNA was independently examined by high-depth whole mtDNA sequencing analysis in our research laboratory and in two Clinical Laboratory Improvement Amendments and College of American Pathologists-accredited laboratories using multiple approaches. A comprehensive exploration of mtDNA segregation in these families shows biparental mtDNA transmission with an autosomal dominantlike inheritance mode. Our results suggest that, although the central dogma of maternal inheritance of mtDNA remains valid, there are some exceptional cases where paternal mtDNA could be passed to the offspring. Elucidating the molecular mechanism for this unusual mode of inheritance will provide new insights into how mtDNA is passed on from parent to offspring and may even lead to the development of new avenues for the therapeutic treatment for pathogenic mtDNA transmission.


September 22, 2019  |  

Genome wide characterization of enterotoxigenic Escherichia coli serogroup O6 isolates from multiple outbreaks and sporadic infections from 1975-2016.

Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea globally, particularly among children under the age of five in developing countries. ETEC O6 is the most common ETEC serogroup, yet the genome wide population structure of isolates of this serogroup is yet to be determined. In this study, we have characterized 40 ETEC O6 isolates collected between 1975-2016 by whole genome sequencing (WGS) and by phenotypic antimicrobial susceptibility testing. To determine the relatedness of isolates, we evaluated two methods-whole genome high-quality single nucleotide polymorphism (whole genome-hqSNP) and core genome SNP analyses using Lyve-SET and Parsnp respectively. All isolates were tested for antimicrobial susceptibility using a panel of 14 antibiotics. ResFinder 2.1 and a custom quinolone resistance determinants workflow were used for resistance determinant detection. VirulenceFinder 1.5 was used for prediction of the virulence genes. Thirty-seven isolates clustered into three major clades (I, II, III) by whole genome-hqSNP and core genome SNP analyses, while three isolates included in the whole genome-hqSNP analysis only did not cluster with clades I-III by both analyses and formed a distantly related outgroup, designated clade IV. Median number of pairwise whole genome-hqSNPs in clonal ETEC O6 outbreaks ranged from 0 to 5. Of the 40 isolates tested for antimicrobial susceptibility, 18 isolates were pansusceptible. Twenty-two isolates were resistant to at least one antibiotic, nine of which were multidrug resistant. Phenotypic antimicrobial resistance (AR) correlated with AR determinants in 22 isolates. Thirty-two isolates harbored both enterotoxin virulence genes while the remaining 8 isolates had only one of the two virulence genes. In summary, whole genome-hqSNP and core genome SNP analyses from this study revealed similar evolutionary relationships and an overall diversity of ETEC O6 isolates independent of time of isolation. Less than 5 pairwise hqSNPs between ETEC O6 isolates is circumstantially indicative of an outbreak cluster. Findings from this study will be a basis for quicker outbreak detection and control by efficient subtyping by WGS.


September 22, 2019  |  

N6-methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression, plant development, and stress responses.

N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a pathogenic lifestyle.

Pectobacterium spp. are necrotrophic bacterial plant pathogens of the family Pectobacteriaceae, responsible for a wide spectrum of diseases of important crops and ornamental plants including soft rot, blackleg, and stem wilt. P. carotovorum is a genetically heterogeneous species consisting of three valid subspecies, P. carotovorum subsp. brasiliense (Pcb), P. carotovorum subsp. carotovorum (Pcc), and P. carotovorum subsp. odoriferum (Pco).Thirty-two P. carotovorum strains had their whole genomes sequenced, including the first complete genome of Pco and another circular genome of Pcb, as well as the high-coverage genome sequences for 30 additional strains covering Pcc, Pcb, and Pco. In combination with 52 other publicly available genome sequences, the comparative genomics study of P. carotovorum and other four closely related species P. polaris, P. parmentieri, P. atrosepticum, and Candidatus P. maceratum was conducted focusing on CRISPR-Cas defense systems and pathogenicity determinants. Our analysis identified two CRISPR-Cas types (I-F and I-E) in Pectobacterium, as well as another I-C type in Dickeya that is not found in Pectobacterium. The core pathogenicity factors (e.g., plant cell wall-degrading enzymes) were highly conserved, whereas some factors (e.g., flagellin, siderophores, polysaccharides, protein secretion systems, and regulatory factors) were varied among these species and/or subspecies. Notably, a novel type of T6SS as well as the sorbitol metabolizing srl operon was identified to be specific to Pco in Pectobacterium.This study not only advances the available knowledge about the genetic differentiation of individual subspecies of P. carotovorum, but also delineates the general genetic features of P. carotovorum by comparison with its four closely related species, thereby substantially enriching the extent of information now available for functional genomic investigations about Pectobacterium.


September 22, 2019  |  

Emerging multidrug-resistant hybrid pathotype shiga toxin-producing Escherichia coli O80 and related strains of clonal complex 165, Europe.

Enterohemorrhagic Escherichia coli serogroup O80, involved in hemolytic uremic syndrome associated with extraintestinal infections, has emerged in France. We obtained circularized sequences of the O80 strain RDEx444, responsible for hemolytic uremic syndrome with bacteremia, and noncircularized sequences of 35 O80 E. coli isolated from humans and animals in Europe with or without Shiga toxin genes. RDEx444 harbored a mosaic plasmid, pR444_A, combining extraintestinal virulence determinants and a multidrug resistance-encoding island. All strains belonged to clonal complex 165, which is distantly related to other major enterohemorrhagic E. coli lineages. All stx-positive strains contained eae-?, ehxA, and genes characteristic of pR444_A. Among stx-negative strains, 1 produced extended-spectrum ß-lactamase, 1 harbored the colistin-resistance gene mcr1, and 2 possessed genes characteristic of enteropathogenic and pyelonephritis E. coli. Because O80-clonal complex 165 strains can integrate intestinal and extraintestinal virulence factors in combination with diverse drug-resistance genes, they constitute dangerous and versatile multidrug-resistant pathogens.


September 22, 2019  |  

Genome of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory.

The small hive beetle (Aethina tumida; ATUMI) is an invasive parasite of bee colonies. ATUMI feeds on both fruits and bee nest products, facilitating its spread and increasing its impact on honey bees and other pollinators. We have sequenced and annotated the ATUMI genome, providing the first genomic resources for this species and for the Nitidulidae, a beetle family that is closely related to the extraordinarily species-rich clade of beetles known as the Phytophaga. ATUMI thus provides a contrasting view as a neighbor for one of the most successful known animal groups.We present a robust genome assembly and a gene set possessing 97.5% of the core proteins known from the holometabolous insects. The ATUMI genome encodes fewer enzymes for plant digestion than the genomes of wood-feeding beetles but nonetheless shows signs of broad metabolic plasticity. Gustatory receptors are few in number compared to other beetles, especially receptors with known sensitivity (in other beetles) to bitter substances. In contrast, several gene families implicated in detoxification of insecticides and adaptation to diverse dietary resources show increased copy numbers. The presence and diversity of homologs involved in detoxification differ substantially from the bee hosts of ATUMI.Our results provide new insights into the genomic basis for local adaption and invasiveness in ATUMI and a blueprint for control strategies that target this pest without harming their honey bee hosts. A minimal set of gustatory receptors is consistent with the observation that, once a host colony is invaded, food resources are predictable. Unique detoxification pathways and pathway members can help identify which treatments might control this species even in the presence of honey bees, which are notoriously sensitive to pesticides.


September 22, 2019  |  

Genotypes and phenotypes of Enterococci isolated from broiler chickens

The objective of this study was to compare the resistance phenotypes to genotypes of enterococci from broiler and to evaluate the persistence and distribution of resistant genotypes in broiler fed bambermycin (BAM), penicillin (PEN), salinomycin (SAL), bacitracin (BAC) or a salinomycin/bacitracin combination (SALBAC) for 35 days. A total of 95 enterococci from cloacal (n=40), cecal (n=38) and litter collected on day 36 (n=17) samples were isolated weekly from day 7 to 36. All isolates were identified by API-20 Strep and their antimicrobial susceptibilities were evaluated using the Sensititre system with the commercially available NARMS’s plates of Gram positive bacteria. Whole genome sequencing (WGS) was used to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics. All isolates were further characterized for hemolysin production (HEM), bile salt hydrolysis (BSH) and gelatinase (GEL) activities. Of the 95 isolates, E. faecium (n = 58) and E. faecalis (n = 24) were the most common Enterococcus species identified. Significant differences in the level of resistance for the E. faecium isolates to ciprofloxacin, macrolide, penicillin and tetracycline were observed among treatments. The bcrR, mefA and aac(6) genes were higher in BAM treatment than the other groups whereas bcrR, ermA, ermB, aphA(3) and tetL were more prevalent in PEN and BAC treatments. Overall, E. faecium isolates showed higher prevalence of antimicrobial resistance, but E. faecalis from litter also exhibited a significant level of resistance. A range of 4 to 15 different virulence genes was detected in E. faecalis. All isolates from litter but one (94.1%) showed BSH activities while 52.9% of them produced GEL. HEM activity was observed only in isolates collected on Day 7 (n= 9) and Day 14 (n= 1). This study confirmed that genetically diverse antimicrobial resistant enterococci harboring virulence factors can be promoted by the use of certain antimicrobials in feed and such enterococci could persist in broiler chickens and their litter, potentially contaminating the soil upon land application. This study underscores the need for ongoing monitoring the AMR enterococci.


September 22, 2019  |  

First draft genome for red sea bream of family Sparidae.

Reference genomes for all organisms on earth are now attainable owing to advances in genome sequencing technologies (Goodwin et al., 2016). Generally, species that contribute considerably to the economy or human welfare are sequenced and are considered more important than others. Furthermore, coastal indigenous people mainly depend on marine species for their food sources, which has resulted in the extinction of several marine species (Cisneros-Montemayor et al., 2016). Of these, an extinction risk assessment of marine fishes, mainly for sea breams (Family: Sparidae), has recently been conducted by way of a global extinction risk assessment from the dataset of the International Union for Conservation of Nature’s Red List Process, which mentions that around 25 species are threatened/near-threatened according to their body weight (Comeros-Raynal et al., 2016). Another report clearly showed the benefit of worldwide aquaculture production, which contributed to 47% of total seafood production, and also highlighted the over-fishing of sea breams (FAO, 2018). The Republic of Korea is the fourth largest seafood producer in the world, producing 3.3 million tons in 2015 and exporting seafood worth $1.6 billion in 2016; therefore, aquaculture- associated research is fundamental for Korea. In the present study, the red sea bream (Pagrus major), which belongs to the family Sparidae, which comprises 35 genera, 132 species, and 10 subspecies (de la Herran et al., 2001; NCBI, 2018), was assessed.


September 22, 2019  |  

Genome of Tenualosa ilisha from the river Padma, Bangladesh.

Hilsa shad (Tenualosa ilisha), is a popular fish of Bangladesh belonging to the Clupeidae family. An anadromous species, like the salmon and many other migratory fish, it is a unique species that lives in the sea and travels to freshwater rivers for spawning. During its entire life, Tenualosa ilisha migrates both from sea to freshwater and vice versa.The genome of Tenualosa ilisha collected from the river Padma of Rajshahi, Bangladesh has been sequenced and its de novo hybrid assembly and structural annotations are being reported here. Illumina and PacBio sequencing platforms were used for high depth sequencing and the draft genome assembly was found to be 816 MB with N50 size of 188 kb. MAKER gene annotation tool predicted 31,254 gene models. Benchmarking Universal Single-Copy Orthologs refer 95% completeness of the assembled genome.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.