Menu
July 7, 2019  |  

Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.

This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.


July 7, 2019  |  

Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation.

Variation in the presence or absence of transposable elements (TEs) is a major source of genetic variation between individuals. Here, we identified 23,095 TE presence/absence variants between 216 Arabidopsis accessions. Most TE variants were rare, and we find these rare variants associated with local extremes of gene expression and DNA methylation levels within the population. Of the common alleles identified, two thirds were not in linkage disequilibrium with nearby SNPs, implicating these variants as a source of novel genetic diversity. Many common TE variants were associated with significantly altered expression of nearby genes, and a major fraction of inter-accession DNA methylation differences were associated with nearby TE insertions. Overall, this demonstrates that TE variants are a rich source of genetic diversity that likely plays an important role in facilitating epigenomic and transcriptional differences between individuals, and indicates a strong genetic basis for epigenetic variation.


July 7, 2019  |  

Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic.

Transcription factors regulate their target genes by binding to regulatory regions in the genome. Although the binding preferences of TP53 are known, it remains unclear what distinguishes functional enhancers from nonfunctional binding. In addition, the genome is scattered with recognition sequences that remain unoccupied. Using two complementary techniques of multiplex enhancer-reporter assays, we discovered that functional enhancers could be discriminated from nonfunctional binding events by the occurrence of a single TP53 canonical motif. By combining machine learning with a meta-analysis of TP53 ChIP-seq data sets, we identified a core set of more than 1000 responsive enhancers in the human genome. This TP53 cistrome is invariably used between cell types and experimental conditions, whereas differences among experiments can be attributed to indirect nonfunctional binding events. Our data suggest that TP53 enhancers represent a class of unsophisticated cell-autonomous enhancers containing a single TP53 binding site, distinct from complex developmental enhancers that integrate signals from multiple transcription factors. © 2016 Verfaillie et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana.

Arabidopsis thaliana serves as a model organism for the study of fundamental physiological, cellular, and molecular processes. It has also greatly advanced our understanding of intraspecific genome variation. We present a detailed map of variation in 1,135 high-quality re-sequenced natural inbred lines representing the native Eurasian and North African range and recently colonized North America. We identify relict populations that continue to inhabit ancestral habitats, primarily in the Iberian Peninsula. They have mixed with a lineage that has spread to northern latitudes from an unknown glacial refugium and is now found in a much broader spectrum of habitats. Insights into the history of the species and the fine-scale distribution of genetic diversity provide the basis for full exploitation of A. thaliana natural variation through integration of genomes and epigenomes with molecular and non-molecular phenotypes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Structural variation detection using next-generation sequencing data: A comparative technical review.

Structural variations (SVs) are mutations in the genome of size at least fifty nucleotides. They contribute to the phenotypic differences among healthy individuals, cause severe diseases and even cancers by breaking or linking genes. Thus, it is crucial to systematically profile SVs in the genome. In the past decade, many next-generation sequencing (NGS)-based SV detection methods have been proposed due to the significant cost reduction of NGS experiments and their ability to unbiasedly detect SVs to the base-pair resolution. These SV detection methods vary in both sensitivity and specificity, since they use different SV-property-dependent and library-property-dependent features. As a result, predictions from different SV callers are often inconsistent. Besides, the noises in the data (both platform-specific sequencing error and artificial chimeric reads) impede the specificity of SV detection. Poorly characterized regions in the human genome (e.g., repeat regions) greatly impact the reads mapping and in turn affect the SV calling accuracy. Calling of complex SVs requires specialized SV callers. Apart from accuracy, processing speed of SV caller is another factor deciding its usability. Knowing the pros and cons of different SV calling techniques and the objectives of the biological study are essential for biologists and bioinformaticians to make informed decisions. This paper describes different components in the SV calling pipeline and reviews the techniques used by existing SV callers. Through simulation study, we also demonstrate that library properties, especially insert size, greatly impact the sensitivity of different SV callers. We hope the community can benefit from this work both in designing new SV calling methods and in selecting the appropriate SV caller for specific biological studies. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Recombination rate heterogeneity within Arabidopsis disease resistance genes.

Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.


July 7, 2019  |  

Comparative genomics of biotechnologically important yeasts.

Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


July 7, 2019  |  

Deep sequencing of 10,000 human genomes.

We report on the sequencing of 10,545 human genomes at 30×-40× coverage with an emphasis on quality metrics and novel variant and sequence discovery. We find that 84% of an individual human genome can be sequenced confidently. This high-confidence region includes 91.5% of exon sequence and 95.2% of known pathogenic variant positions. We present the distribution of over 150 million single-nucleotide variants in the coding and noncoding genome. Each newly sequenced genome contributes an average of 8,579 novel variants. In addition, each genome carries on average 0.7 Mb of sequence that is not found in the main build of the hg38 reference genome. The density of this catalog of variation allowed us to construct high-resolution profiles that define genomic sites that are highly intolerant of genetic variation. These results indicate that the data generated by deep genome sequencing is of the quality necessary for clinical use.


July 7, 2019  |  

Whole-genome de novo sequencing, combined with RNA-Seq analysis, reveals unique genome and physiological features of the amylolytic yeast Saccharomycopsis fibuligera and its interspecies hybrid.

Genomic studies on fungal species with hydrolytic activity have gained increased attention due to their great biotechnological potential for biomass-based biofuel production. The amylolytic yeast Saccharomycopsis fibuligera has served as a good source of enzymes and genes involved in saccharification. Despite its long history of use in food fermentation and bioethanol production, very little is known about the basic physiology and genomic features of S. fibuligera.We performed whole-genome (WG) de novo sequencing and complete assembly of S. fibuligera KJJ81 and KPH12, two isolates from wheat-based Nuruk in Korea. Intriguingly, the KJJ81 genome (~38 Mb) was revealed as a hybrid between the KPH12 genome (~18 Mb) and another unidentified genome sharing 88.1% nucleotide identity with the KPH12 genome. The seven chromosome pairs of KJJ81 subgenomes exhibit highly conserved synteny, indicating a very recent hybridization event. The phylogeny inferred from WG comparisons showed an early divergence of S. fibuligera before the separation of the CTG and Saccharomycetaceae clades in the subphylum Saccharomycotina. Reconstructed carbon and sulfur metabolic pathways, coupled with RNA-Seq analysis, suggested a marginal Crabtree effect under high glucose and activation of sulfur metabolism toward methionine biosynthesis under sulfur limitation in this yeast. Notably, the lack of sulfate assimilation genes in the S. fibuligera genome reflects a unique phenotype for Saccharomycopsis clades as natural sulfur auxotrophs. Extended gene families, including novel genes involved in saccharification and proteolysis, were identified. Moreover, comparative genome analysis of S. fibuligera ATCC 36309, an isolate from chalky rye bread in Germany, revealed that an interchromosomal translocation occurred in the KPH12 genome before the generation of the KJJ81 hybrid genome.The completely sequenced S. fibuligera genome with high-quality annotation and RNA-Seq analysis establishes an important foundation for functional inference of S. fibuligera in the degradation of fermentation mash. The gene inventory facilitates the discovery of new genes applicable to the production of novel valuable enzymes and chemicals. Moreover, as the first gapless genome assembly in the genus Saccharomycopsis including members with desirable traits for bioconversion, the unique genomic features of S. fibuligera and its hybrid will provide in-depth insights into fungal genome dynamics as evolutionary adaptation.


July 7, 2019  |  

TeloPCR-seq: a high-throughput sequencing approach for telomeres.

We have developed a high-throughput sequencing approach that enables us to determine terminal telomere sequences from tens of thousands of individual Schizosaccharomyces pombe telomeres. This method provides unprecedented coverage of telomeric sequence complexity in fission yeast. S. pombe telomeres are composed of modular degenerate repeats that can be explained by variation in usage of the TER1 RNA template during reverse transcription. Taking advantage of this deep sequencing approach, we find that ‘like’ repeat modules are highly correlated within individual telomeres. Moreover, repeat module preference varies with telomere length, suggesting that existing repeats promote the incorporation of like repeats and/or that specific conformations of the telomerase holoenzyme efficiently and/or processively add repeats of like nature. After the loss of telomerase activity, this sequencing and analysis pipeline defines a population of telomeres with altered sequence content. This approach will be adaptable to study telomeric repeats in other organisms and also to interrogate repetitive sequences throughout the genome that are inaccessible to other sequencing methods.© 2016 Federation of European Biochemical Societies.


July 7, 2019  |  

Construction of two whole genome radiation hybrid panels for dromedary (Camelus dromedarius): 5000RAD and 15000RAD.

The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000RADand 15000RAD) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000RADpanel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000RADpanel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000RADpanel is an important high-resolution complement to the main 5000RADpanel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools.


July 7, 2019  |  

GenomeLandscaper: Landscape analysis of genome-fingerprints maps assessing chromosome architecture.

Assessing correctness of an assembled chromosome architecture is a central challenge. We create a geometric analysis method (called GenomeLandscaper) to conduct landscape analysis of genome-fingerprints maps (GFM), trace large-scale repetitive regions, and assess their impacts on the global architectures of assembled chromosomes. We develop an alignment-free method for phylogenetics analysis. The human Y chromosomes (GRCh.chrY, HuRef.chrY and YH.chrY) are analysed as a proof-of-concept study. We construct a galaxy of genome-fingerprints maps (GGFM) for them, and a landscape compatibility among relatives is observed. But a long sharp straight line on the GGFM breaks such a landscape compatibility, distinguishing GRCh38p1.chrY (and throughout GRCh38p7.chrY) from GRCh37p13.chrY, HuRef.chrY and YH.chrY. We delete a 1.30-Mbp target segment to rescue the landscape compatibility, matching the antecedent GRCh37p13.chrY. We re-locate it into the modelled centromeric and pericentromeric region of GRCh38p10.chrY, matching a gap placeholder of GRCh37p13.chrY. We decompose it into sub-constituents (such as BACs, interspersed repeats, and tandem repeats) and trace their homologues by phylogenetics analysis. We elucidate that most examined tandem repeats are of reasonable quality, but the BAC-sized repeats, 173U1020C (176.46 Kbp) and 5U41068C (205.34 Kbp), are likely over-repeated. These results offer unique insights into the centromeric and pericentromeric regions of the human Y chromosomes.


July 7, 2019  |  

Satellite DNA evolution: old ideas, new approaches.

A substantial portion of the genomes of most multicellular eukaryotes consists of large arrays of tandemly repeated sequence, collectively called satellite DNA. The processes generating and maintaining different satellite DNA abundances across lineages are important to understand as satellites have been linked to chromosome mis-segregation, disease phenotypes, and reproductive isolation between species. While much theory has been developed to describe satellite evolution, empirical tests of these models have fallen short because of the challenges in assessing satellite repeat regions of the genome. Advances in computational tools and sequencing technologies now enable identification and quantification of satellite sequences genome-wide. Here, we describe some of these tools and how their applications are furthering our knowledge of satellite evolution and function. Copyright © 2018 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

To B or not to B: a tale of unorthodox chromosomes.

Highlights • B chromosomes are dispensable parts of the karyotype of many eukaryotes. • Deemed genome parasites in plants and animals, provide advantage to pathogenic fungi. • Often enriched in repeats and in fast evolving pathogenicity-related genes. • B chromosomes are not a uniform class, share certain features with core chromosomes.


July 7, 2019  |  

Molecular preadaptation to antimony resistance in Leishmania donovani on the Indian subcontinent.

Antimonials (Sb) were used for decades for chemotherapy of visceral leishmaniasis (VL). Now abandoned in the Indian subcontinent (ISC) because of Leishmania donovani resistance, this drug offers a unique model for understanding drug resistance dynamics. In a previous phylogenomic study, we found two distinct populations of L. donovani: the core group (CG) in the Gangetic plains and ISC1 in the Nepalese highlands. Sb resistance was only encountered within the CG, and a series of potential markers were identified. Here, we analyzed the development of resistance to trivalent antimonials (SbIII) upon experimental selection in ISC1 and CG strains. We observed that (i) baseline SbIII susceptibility of parasites was higher in ISC1 than in the CG, (ii) time to SbIII resistance was higher for ISC1 parasites than for CG strains, and (iii) untargeted genomic and metabolomic analyses revealed molecular changes along the selection process: these were more numerous in ISC1 than in the CG. Altogether these observations led to the hypothesis that CG parasites are preadapted to SbIII resistance. This hypothesis was experimentally confirmed by showing that only wild-type CG strains could survive a direct exposure to the maximal concentration of SbIII The main driver of this preadaptation was shown to be MRPA, a gene involved in SbIII sequestration and amplified in an intrachromosomal amplicon in all CG strains characterized so far. This amplicon emerged around 1850 in the CG, well before the implementation of antimonials for VL chemotherapy, and we discuss here several hypotheses of selective pressure that could have accompanied its emergence.IMPORTANCE The “antibiotic resistance crisis” is a major challenge for scientists and medical professionals. This steady rise in drug-resistant pathogens also extends to parasitic diseases, with antimony being the first anti-Leishmania drug that fell in the Indian subcontinent (ISC). Leishmaniasis is a major but neglected infectious disease with limited therapeutic options. Therefore, understanding how parasites became resistant to antimonials is of commanding importance. In this study, we experimentally characterized the dynamics of this resistance acquisition and show for the first time that some Leishmania populations of the ISC were preadapted to antimony resistance, likely driven by environmental factors or by drugs used in the 19th century. Copyright © 2018 Dumetz et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.