Menu
June 1, 2021  |  

An improved circular consensus algorithm with an application to detection of HIV-1 Drug-Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger Sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach arbitrarily high quality across longer insert lengths at a lower cost and higher throughput than Sanger Sequencing. We apply this new algorithm, dubbed CCS2, to the characterization of the HIV-1 K103N drug-resistance associated mutation, which is both important clinically, and represents a challenge due to regional sequence context. A mutation was introduced into the 3rd position of amino acid position 103 (A>C substitution) of the RT gene on a pNL4-3 backbone by site-directed mutagenesis. Regions spanning ~1,300 bp were PCR amplified from both the non-mutated and mutant (K103N) plasmids, and were sequenced individually and as a 50:50 mixture. Sequencing data were analyzed using the new CCS2 algorithm, which uses a fully-generative probabilistic model of our SMRT Sequencing process to polish consensus sequences to arbitrarily high accuracy. This result, previously demonstrated for multi-molecule consensus sequences with the Quiver algorithm, is made possible by incorporating per-Zero Mode Waveguide (ZMW) characteristics, thus accounting for the intrinsic changes in the sequencing process that are unique to each ZMW. With CCS2, we are able to achieve a per-read empirical quality of QV30 with 19X coverage. This yields ~5000 1.3 kb consensus sequences with a collective empirical quality of ~QV40. Additionally, we demonstrate a 0% miscall rate in both unmixed samples, and estimate a 48:52% frequency for the K103N mutation in the mixed sample, consistent with data produced by orthogonal platforms.


June 1, 2021  |  

Targeted sequencing and chromosomal haplotype assembly using TLA and SMRT Sequencing

With the increasing availability of whole-genome sequencing, haplotype reconstruction of individual genomes, or haplotype assembly, remains unsolved. Like the de novo genome assembly problem, haplotype assembly is greatly simplified by having more long-range information. The Targeted Locus Amplification (TLA) technology from Cergentis has the unique capability of targeting a specific region of the genome using a single primer pair and yielding ~2 kb DNA circles that are comprised of ~500 bp fragments. Fragments from the same circle come from the same haplotype and follow an exponential decay in distance from the target region, with a span that reaches the multi-megabase range. Here, we apply TLA to the BRCA1 gene on NA12878 and then sequence the resulting 2 kb circles on a PacBio RS II. The multiple fragments per circle were iteratively mapped to hg19 and then haplotype assembled using HAPCUT. We show that the 80 kb length of BRCA1 is represented by a single haplotype block, which was validated against GIAB data. We then explored chromosomal-scale haplotype assembly by combining these data with whole genome shotgun PacBio long reads, and demonstrate haplotype blocks approaching the length of chromosome 17 on which BRCA1 lies. Finally, by performing TLA without the amplification step and size selecting for reads >5 kb to maximize the number of fragments per read, we target whole genome haplotype assembly across all chromosomes.


June 1, 2021  |  

SMRT Sequencing of DNA and RNA samples extracted from formalin-fixed and paraffin-embedded tissues

Recent advances in next-generation sequencing have led to the increased use of formalin-fixed and paraffin-embedded (FFPE) tissues for medical samples in disease and scientific research. Single Molecule, Real-Time (SMRT) Sequencing offers a unique advantage in that it allows direct analysis of FFPE samples without amplification. However, obtaining ample long-read information from FFPE samples has been a challenge due to the quality and quantity of the extracted DNA. DNA samples extracted from FFPE often contain damaged sites, including breaks in the backbone and missing or altered nucleotide bases, which directly impact sequencing and amplification. Additionally, the quality and quantity of the recovered DNA also vary depending on the extraction methods used. We have evaluated the Adaptive Focused Acoustics (AFA™) system by Covaris as a method for obtaining high molecular weight DNA suitable for SMRTbell template preparation and subsequent single molecule sequencing. Using this method, genomic DNA was extracted from normal kidney FFPE scrolls acquired from Cooperative Human Tissue Network (CHTN), University of Pennsylvania. Damaged sites present in the extracted DNA were repaired using a DNA Damage Repair step, and the treated DNA was constructed into SMRTbell libraries suitable for sequencing on the PacBio RS II System. Using the same repaired DNA, we also tested PCR efficiency of target gene regions of up to 5 kb. The resulting amplicons were constructed into SMRTbell templates for full-length sequencing on the PacBio RS II System. We found the Adaptive Focused Acoustics (AFA) system combined with truXTRAC™ by Covaris to be effective and efficient. This system is easy and simple to use, and the resulting DNA is compatible with SMRTbell library preparation for targeted and whole genome SMRT Sequencing. The data presented here demonstrates single molecule sequencing of DNA samples extracted from tissues embedded in FFPE.


June 1, 2021  |  

Highly sensitive and cost-effective detection of somatic cancer variants using single-molecule, real-time sequencing

Next-Generation Sequencing (NGS) technologies allow for molecular profiling of cancer samples with high sensitivity and speed at reduced cost. For efficient profiling of cancer samples, it is important that the NGS methods used are not only robust, but capable of accurately detecting low-frequency somatic mutations. Single Molecule, Real-Time (SMRT) Sequencing offers several advantages, including the ability to sequence single molecules with very high accuracy (>QV40) using the circular consensus sequencing (CCS) approach. The availability of genetically defined, human genomic reference standards provides an industry standard for the development and quality control of molecular assays for studying cancer variants. Here we characterize SMRT Sequencing for the detection of low-frequency somatic variants using the Quantitative Multiplex DNA Reference Standards from Horizon Discovery, combined with amplification of the variants using the Multiplicom Tumor Hotspot MASTR Plus assay. First, we sequenced a reference standard containing precise allelic frequencies from 1% to 24.5% for major oncology targets verified using digital PCR. This reference material recapitulates the complexity of tumor composition and serves as a well-characterized control. The control sample was amplified using the Multiplicom Tumor Hotspot MASTR Plus assay that targets 252 amplicons (121-254 bp) from 26 relevant cancer genes, which includes all 11 variants in the control sample. Next, we sequenced control samples prepared by SeraCare Life Sciences, which contained a defined mutation at allelic frequencies from 10% down to 0.1%. The wild type and mutant amplicons were serially diluted, sequenced and analyzed using SMRT Sequencing to identify the variants and determine the observed frequency. The random error profile and high-accuracy CCS reads make it possible to accurately detect low-frequency somatic variants.


June 1, 2021  |  

Minimization of chimera formation and substitution errors in full-length 16S PCR amplification

The constituents and intra-communal interactions of microbial populations have garnered increasing interest in areas such as water remediation, agriculture and human health. Amplification and sequencing of the evolutionarily conserved 16S rRNA gene is an efficient method of profiling communities. Currently, most targeted amplification focuses on short, hypervariable regions of the 16S sequence. Distinguishing information not spanned by the targeted region is lost, and species-level classification is often not possible. PacBio SMRT Sequencing easily spans the entire 1.5 kb 16S gene in a single read, producing highly accurate single-molecule sequences that can improve the identification of individual species in a metapopulation.However, this process still relies upon PCR amplification from a mixture of similar sequences, which may result in chimeras, or recombinant molecules, at rates upwards of 20%. These PCR artifacts make it difficult to identify novel species, and reduce the amount of informative sequences. We investigated multiple factors that may contribute to chimera formation, such as template damage, denaturation time before and during thermocycling, polymerase extension time, and reaction volume. We found two related factors that contribute to chimera formation: the amount of input template into the PCR reaction, and the number of PCR cycles.A second problem that can confound analysis is sequence errors generated during amplification and sequencing. With the updated algorithm for circular consensus sequencing (CCS2), single-molecule reads can be filtered to 99.99% predicted accuracy. Substitution errors in these highly filtered reads may be dominated by mis-incorporations during amplification. Sequence differences in full-length 16S amplicons from several commercial high-fidelity PCR kits were compared.We show results of our experiments and describe our optimized protocol for full-length 16S amplification for SMRT Sequencing. These optimizations have broader implications for other applications that use PCR amplification to phase variations across targeted regions and generate highly accurate reference sequences.


June 1, 2021  |  

An improved circular consensus algorithm with an application to detect HIV-1 Drug Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach high quality across longer insert lengths at a lower cost and higher throughput than Sanger sequencing. We applied CCS2 to the characterization of the HIV-1 K103N drug-resistance associated mutation in both clonal and patient samples. This particular DRAM has previously proved to be clinically relevant, but challenging to characterize due to regional sequence context. First, a mutation was introduced into the 3rd position of amino acid position 103 (A>C substitution) of the RT gene on a pNL4-3 backbone by site-directed mutagenesis. Regions spanning ~1.3 kb were PCR amplified from both the non-mutated and mutant (K103N) plasmids, and were sequenced individually and as a 50:50 mixture. Additionally, the proviral reservoir of a subject with known dates of virologic failure of an Efavirenz-based regimen and with documented emergence of drug resistant (K103N) viremia was sequenced at several time points as a proof-of-concept study to determine the kinetics of retention and decay of K103N.Sequencing data were analyzed using the new CCS2 algorithm, which uses a fully-generative probabilistic model of our SMRT Sequencing process to polish consensus sequences to high accuracy. With CCS2, we are able to achieve a per-read empirical quality of QV30 (99.9% accuracy) at 19X coverage. A total of ~5000 1.3 kb consensus sequences with a collective empirical quality of ~QV40 (99.99%) were obtained for each sample. We demonstrate a 0% miscall rate in both unmixed control samples, and estimate a 48:52 frequency for the K103N mutation in the mixed (50:50) plasmid sample, consistent with data produced by orthogonal platforms. Additionally, the K103N escape variant was only detected in proviral samples from time points subsequent (19%) to the emergence of drug resistant viremia. This tool might be used to monitor the HIV reservoir for stable evolutionary changes throughout infection.


June 1, 2021  |  

Workflow for processing high-throughput, Single Molecule, Real-Time Sequencing data for analyzing the microbiome of patients undergoing fecal microbiota transplantation

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500 bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-3 kb range, with >99% accuracy can be generated using the previous generation PacBio RS II or, in much higher throughput, using the new Sequel System. While throughput is lower compared to short-read sequencing methods, the reads are a true random sampling of the underlying community since SMRT Sequencing has been shown to have very low sequence-context bias. With single-molecule reads >1 kb at >99% consensus accuracy, it is reasonable to expect a high percentage of reads to include genes or gene fragments useful for analysis without the need for de novo assembly. Here we present the results of circular consensus sequencing for an individual’s microbiome, before and after undergoing fecal microbiota transplantation (FMT) in order to treat a chronic Clostridium difficile infection. We show that even with relatively low sequencing depth, the long-read, assembly-free, random sampling allows us to profile low abundance community members at the species level. We also show that using shotgun sampling with long reads allows a level of functional insight not possible with classic targeted 16S, or short read sequencing, due to entire genes being covered in single reads.


June 1, 2021  |  

WGS SMRT Sequencing of patient samples from a fecal microbiota transplant trial

Fecal samples were obtained from human subjects in the first blinded, placebo-controlled trial to evaluate the efficacy and safety of fecal microbiota transplant (FMT) for treatment of recurrent C. difficile infection. Samples included pre-and post-FMT transplant, post-placebo transplant, and the donor control; samples were taken at 2 and 8 week post-FMT. Sequencing was done on the PacBio Sequel System, with the goal of obtaining high quality sequences covering whole genes or gene clusters, which will be used to better understand the relationship between the composition and functional capabilities of intestinal microbiomes and patient health. Methods: Samples were randomly sheared to 2-3 kb fragments, a sufficient length to cover most genes, and SMRTbell libraries were prepared using standard protocols. Libraries were run on the Sequel System, which has a throughput of hundreds of thousands of reads per SMRT Cell, adequate yield to sample the complex microbiomes of post-transplant and donor samples.Results: Here we characterize samples, describe library prep methods and detail Sequel System operation, including run conditions. Descriptive statistics of data output (primary analysis) are presented, along with SMRT Analysis reports on circular consensus sequence (CCS) reads generated using an updated algorithm (CCS2). Final sequencing yields are filtered at various levels of predicted accuracy from 90% to 99.9%. Previous studies done using the PacBio RS II System demonstrated the ability to profile at the species level, and in some cases the strain level, and provided functional insight. Conclusions: These results demonstrate that the Sequel System is well-suited for characterization of complex microbial communities, with the ability for high-throughput generation of extremely accurate single-molecule sequences, each several kilobases in length. The entire process from shearing and library prep through sequencing and CCS analysis can be completed in less than 48 hours.


June 1, 2021  |  

Characterization of the Poly-T variants in the TOMM40 gene using PacBio long reads

Genes associated with several neurological disorders have been shown to be highly polymorphic. Targeted sequencing of these genes using NGS technologies is a powerful way to increase the cost-effectiveness of variant discovery and detection. However, for a comprehensive view of these target genes, it is necessary to have complete and uniform coverage across regions of interest. Unfortunately, short-read sequencing technologies are not ideal for these types of studies as they are prone to mis-mapping and often fail to span repetitive regions. Targeted sequencing with PacBio long reads provides the unique advantage of single-molecule observations of complex genomic regions. PacBio long reads not only provide continuous sequence data though polymorphic or repetitive regions, but also have no GC bias. Here we describe the characterization of the poly-T locus in TOMM40, a gene known to be associated with progression to Alzheimer’s, using PacBio long reads. Probes were designed to capture a 20 kb region comprising the TOMM40 and ApoE genes. Target regions were captured in multiple cell lines and sequencing libraries made using standard sample preparation methods. We will present our results on the poly-T structural variants that we observed in TOMM40 in these cell lines. We will also present our results on probe design optimization and barcoding strategies for a cost-effective solution.


June 1, 2021  |  

Enrichment of unamplified DNA and long-read SMRT Sequencing to unlock repeat expansion disorders

Nucleotide repeat expansions are a major cause of neurological and neuromuscular disease in humans, however, the nature of these genomic regions makes characterizing them extremely challenging. Accurate DNA sequencing of repeat expansions using short-read sequencing technologies is difficult, as short-read technologies often cannot read through regions of low sequence complexity. Additionally, these short reads do not span the entire region of interest and therefore sequence assembly is required. Lastly, most target enrichment methods are reliant upon amplification which adds the additional caveat of PCR bias. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system for specific targeting of individual human genes. This method, in conjunction with PacBio’s long reads and uniform coverage, enables sequencing of complex genomic regions that cannot be investigated with other technologies. Using human genomic DNA samples and this strategy, we have successfully targeted the loci of Huntington’s Disease (HTT; CAG repeat), Fragile X (FMR1; CGG repeat), ALS (C9orf72; GGGGCC repeat), and Spinocerebellar ataxia type 10 (SCA10; variable ATTCT repeat) for examination. With this data, we demonstrate the ability to isolate hundreds of individual on-target molecules in a single SMRT Cell and accurately sequence through long repeat stretches, regardless of the extreme GC-content. The method is compatible with multiplexing of multiple targets and multiple samples in a single reaction. This technique also captures native DNA molecules for sequencing, allowing for the possibility of direct detection and characterization of epigenetic signatures.


June 1, 2021  |  

“SMRTer Confirmation”: Scalable clinical read-through variant confirmation using the Pacific Biosciences SMRT Sequencing platform

Next-generation sequencing (NGS) has significantly improved the cost and turnaround time for diagnostic genetic tests. ACMG recommends variant confirmation by an orthogonal method, unless sufficiently high sensitivity and specificity can be demonstrated using NGS alone. Most NGS laboratories make extensive use of Sanger sequencing for secondary confirmation of single nucleotide variants (SNVs) and indels, representing a large fraction of the cost and time required to deliver high quality genetic testing data to clinicians and patients. Despite its established data quality, Sanger is not a high-throughput method by today’s standards from either an assay or analysis standpoint as it can involve manual review of Sanger traces and is not amenable to multiplexing. Toward a scalable solution for confirmation, Invitae has developed a fully automated and LIMS-tracked assay and informatics pipeline that utilizes the Pacific Biosciences SMRT sequencing platform. Invitae’s pipeline generates PCR amplicons that encompass the variant(s) of interest, which are converted to closed DNA structures (SMRTbells) and sequenced in pools of 96 per SMRTcell. Each amplicon is appended with a 16nt barcode that encodes the patient and variant IDs. Per-sample de-multiplexing, alignment, variant calling, and confirmation resolution are handled via an automated pipeline. The confirmation process was validated by analyzing 243 clinical SNVs and indels in parallel with the gold standard Sanger sequencing method. Amplicons were sequenced and analyzed in technical replicates to demonstrate reproducibility. In this study, the PacBio-based confirmation pipeline demonstrated high reproducibility (97.5%), and outperformed Sanger in the fraction of primary NGS variants confirmed (PacBio = 93.4% and 94.7% confirmed across two replicates, Sanger = 84.8%) while having 100% concordance of confirmation status among overlapping confirmation calls.


June 1, 2021  |  

Profiling complex population genomes with highly accurate single molecule reads: cow rumen microbiomes

Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS sequencing enables functional profiling as well, with the ultimate goal of complete genome assemblies. Here we compare the complex microbiomes in 5 cow rumen samples, for which Illumina WGS sequence data was also available. To maximize the PacBio single-molecule sequence accuracy, libraries of 2 to 3 kb were generated, allowing many polymerase passes per molecule. The resulting reads were filtered at predicted single-molecule accuracy levels up to 99.99%. Community compositions of the 5 samples were compared with Illumina WGS assemblies from the same set of samples, indicating rare organisms were often missed with Illumina. Assembly from PacBio CCS reads yielded a contig >100 kb in length with 6-fold coverage. Mapping of Illumina reads to the 101 kb contig verified the PacBio assembly and contig sequence. These results illustrate ways in which long accurate reads benefit analysis of complex communities.


June 1, 2021  |  

Using the PacBio IsoSeq method to search for novel colorectal cancer biomarkers

Early detection of colorectal cancer (CRC) and its precursor lesions (adenomas) is crucial to reduce mortality rates. The fecal immunochemical test (FIT) is a non-invasive CRC screening test that detects the blood-derived protein hemoglobin. However, FIT sensitivity is suboptimal especially in detection of CRC precursor lesions. As adenoma-to-carcinoma progression is accompanied by alternative splicing, tumor-specific proteins derived from alternatively spliced RNA transcripts might serve as candidate biomarkers for CRC detection.


June 1, 2021  |  

Targeted SMRT Sequencing of difficult regions of the genome using a Cas9, non-amplification based method

Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system for specific targeting of individual human genes. This method, in conjunction with SMRT Sequencing’s long reads, high consensus accuracy, and uniform coverage, allows the sequencing of complex genomic regions that cannot be investigated with other technologies.


June 1, 2021  |  

Profiling complex communities with highly accurate single molecule reads: cow rumen microbiomes

Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS sequencing enables functional profiling as well, with the ultimate goal of complete genome assemblies. Here we compare the complex microbiomes in 5 cow rumen samples, for which Illumina WGS sequence data was also available. To maximize the PacBio single-molecule sequence accuracy, libraries of 2 to 3 kb were generated, allowing many polymerase passes per molecule. The resulting reads were filtered at predicted single-molecule accuracy levels up to 99.99%. Community compositions of the 5 samples were compared with Illumina WGS assemblies from the same set of samples, indicating rare organisms were often missed with Illumina. Assembly from PacBio CCS reads yielded a contig >100 kb in length with 6-fold coverage. Mapping of Illumina reads to the 101 kb contig verified the PacBio assembly and contig sequence. Scaffolding with reads from a PacBio unsheared library produced a complete genome of 2.4 Mb. These results illustrate ways in which long accurate reads benefit analysis of complex communities.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.