Menu
July 7, 2019

Complete genome sequencing and comparative genomic analysis of functionally diverse Lysinibacillus sphaericus III(3)7.

Lysinibacillus sphaericus III(3)7 is a native Colombian strain, the first one isolated from soil samples. This strain has shown high levels of pathogenic activity against Culex quinquefaciatus larvae in laboratory assays compared to other members of the same species. Using Pacific Biosciences sequencing technology we sequenced, annotated (de novo) and described the genome of strain III(3)7, achieving a complete genome sequence status. We then performed a comparative analysis between the newly sequenced genome and the ones previously reported for Colombian isolates L. sphaericus OT4b.31, CBAM5 and OT4b.25, with the inclusion of L. sphaericus C3-41 that has been used as a reference genome for most of previous genome sequencing projects. We concluded that L. sphaericus III(3)7 is highly similar with strain OT4b.25 and shares high levels of synteny with isolates CBAM5 and C3-41.


July 7, 2019

Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties.

Chenopodium quinoa Willd. (quinoa) originated from the Andean region of South America, and is a pseudocereal crop of the Amaranthaceae family. Quinoa is emerging as an important crop with the potential to contribute to food security worldwide and is considered to be an optimal food source for astronauts, due to its outstanding nutritional profile and ability to tolerate stressful environments. Furthermore, plant pathologists use quinoa as a representative diagnostic host to identify virus species. However, molecular analysis of quinoa is limited by its genetic heterogeneity due to outcrossing and its genome complexity derived from allotetraploidy. To overcome these obstacles, we established the inbred and standard quinoa accession Kd that enables rigorous molecular analysis, and presented the draft genome sequence of Kd, using an optimized combination of high-throughput next generation sequencing on the Illumina Hiseq 2500 and PacBio RS II sequencers. The de novo genome assembly contained 25 k scaffolds consisting of 1 Gbp with N50 length of 86 kbp. Based on these data, we constructed the free-access Quinoa Genome DataBase (QGDB). Thus, these findings provide insights into the mechanisms underlying agronomically important traits of quinoa and the effect of allotetraploidy on genome evolution. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019

Complete genome sequence of Cyanobium sp. NIES-981, a marine strain potentially useful for ecotoxicological bioassays.

Cyanobium sp. NIES-981 is a marine cyanobacterium isolated from tidal flat sands in Okinawa, Japan. Here, we report the complete 3.0-Mbp genome sequence of NIES-981, which is composed of a single chromosome, and its annotation. This sequence information may provide a basis for developing an ecotoxicological bioassay using this strain. Copyright © 2016 Yamaguchi et al.


July 7, 2019

Chromosome and linear plasmid sequences of a 2015 human isolate of the tick-borne relapsing fever spirochete, Borrelia turicatae.

The sequences of the complete linear chromosome and 7 linear plasmids of the relapsing fever spirochete Borrelia turicatae are presented in this report. The 925,547 bp of chromosome and 380,211 bp of plasmid sequence were predicted to contain a total of 1,131 open reading frames, with an average G+C content of 29.7%. Copyright © 2016 Kingry et al.


July 7, 2019

Recombination rate heterogeneity within Arabidopsis disease resistance genes.

Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.


July 7, 2019

E. coli O157:H7 strain EDL933 harbors multiple functional prophage-associated genes necessary for the utilization of 5-N-acetyl-9-O-acetyl neuraminic acid as a growth substrate.

Enterohemorrhagic E. coli (EHEC) O157:H7 strain EDL933 harbors multiple prophage-associated open reading frames (orfs) in its genome, which are highly homologous to the chromosomal nanS gene. The latter is part of the nanCMS-operon, which is present in most E. coli strains and encodes an esterase, which is responsible for the mono-deacetylation of 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac2). Whereas one prophage-borne orf (z1466) has been characterized in previous studies, the functions of the other nanS-homologous orfs are unknown.In the current study, the nanS-homologous orfs of EDL933 were initially studied in silico Due to their homology to the chromosomal nanS gene and their location in prophage genomes, we designated them nanS-p, and numbered the different nanS-p alleles consecutively from 1-10. The two alleles nanS-p2 and nanS-p4 were selected for production of recombinant proteins, their enzymatic activities were investigated and differences in their temperature optima were found. Furthermore, a function of these enzymes in substrate utilization could be demonstrated using an E. coli C600?nanS mutant in a growth medium with Neu5,9Ac2 as carbon source and supplementation with the different recombinant NanS-p proteins. Moreover, generation of sequential deletion of all nanS-p alleles in strain EDL933, and subsequent growth experiments demonstrated a gene-dose-effect on the utilization of Neu5,9Ac2Since Neu5,9Ac2 is an important component of human and animal gut mucus, and the nutrient availability in the large intestine is limited, we hypothesize that the presence of multiple Neu5,9Ac2-esterases provides them a nutrient supply under certain conditions in the large intestine, even if particular prophages get lost.In this study, a group of homologous prophage-borne nanS-p alleles and two of the corresponding enzymes of enterohemorrhagic E. coli (EHEC) O157:H7 strain EDL933 are characterized that may be important to provide alternative genes for substrate utilization. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain.

Klebsiella pneumoniae subsp. pneumoniae KP617 is a pathogenic strain that coproduces OXA-232 and NDM-1 carbapenemases. We sequenced the genome of KP617, which was isolated from the wound of a Korean burn patient, and performed a comparative genomic analysis with three additional strains: PittNDM01, NUHL24835 and ATCC BAA-2146.The complete genome of KP617 was obtained via multi-platform whole-genome sequencing. Phylogenetic analysis along with whole genome and multi-locus sequence typing of genes of the Klebsiella pneumoniae species showed that KP617 belongs to the WGLW2 group, which includes PittNDM01 and NUHL24835. Comparison of annotated genes showed that KP617 shares 98.3 % of its genes with PittNDM01. Nineteen antibiotic resistance genes were identified in the KP617 genome: bla OXA-1 and bla SHV-28 in the chromosome, bla NDM-1 in plasmid 1, and bla OXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found. We identified 117 virulence factors in the KP617 genome, and discovered that the genes encoding these factors were also harbored by the reference strains; eight genes were lipopolysaccharide-related and four were capsular polysaccharide-related. A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain.Whole-genome sequencing and bioinformatics analysis revealed similarity in the genome sequences and content, and differences in phage-related genes, plasmids and antimicrobial resistance genes between KP617 and the references. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.


July 7, 2019

Complete genome sequence of Psychrobacter alimentarius PAMC 27889, a psychrophile isolated from an Antarctic rock sample.

Psychrobacter alimentarius PAMC 27889, a Gram-negative, psychrophilic bacterium, was isolated from an Antarctic rock sample. Here, we report the complete genome of P. alimentarius PAMC 27889, which has the nonmevalonate methylerythritol phosphate pathway of terpenoid biosynthesis and a complete gene cluster for benzoate degradation. Copyright © 2016 Lee et al.


July 7, 2019

Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil.

Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism with implications for function in soil environments.


July 7, 2019

Draft genome sequence of Ustilago trichophora RK089, a promising malic acid producer.

The basidiomycetous smut fungus Ustilago trichophora RK089 produces malate from glycerol. De novo genome sequencing revealed a 20.7-Mbp genome (301 gap-closed contigs, 246 scaffolds). A comparison to the genome of Ustilago maydis 521 revealed all essential genes for malate production from glycerol contributing to metabolic engineering for improving malate production. Copyright © 2016 Zambanini et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.