Menu
July 7, 2019

Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites.

Of the two cultivated species of allopolyploid cotton, Gossypium barbadense produces extra-long fibers for the production of superior textiles. We sequenced its genome (AD)2 and performed a comparative analysis. We identified three bursts of retrotransposons from 20 million years ago (Mya) and a genome-wide uneven pseudogenization peak at 11-20 Mya, which likely contributed to genomic divergences. Among the 2,483 genes preferentially expressed in fiber, a cell elongation regulator, PRE1, is strikingly At biased and fiber specific, echoing the A-genome origin of spinnable fiber. The expansion of the PRE members implies a genetic factor that underlies fiber elongation. Mature cotton fiber consists of nearly pure cellulose. G. barbadense and G. hirsutum contain 29 and 30 cellulose synthase (CesA) genes, respectively; whereas most of these genes (>25) are expressed in fiber, genes for secondary cell wall biosynthesis exhibited a delayed and higher degree of up-regulation in G. barbadense compared with G. hirsutum, conferring an extended elongation stage and highly active secondary wall deposition during extra-long fiber development. The rapid diversification of sesquiterpene synthase genes in the gossypol pathway exemplifies the chemical diversity of lineage-specific secondary metabolites. The G. barbadense genome advances our understanding of allopolyploidy, which will help improve cotton fiber quality.


July 7, 2019

Potential mechanisms of attenuation for rifampicin-passaged strains of Flavobacterium psychrophilum.

Flavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease in salmonids. Earlier research showed that a rifampicin-passaged strain of F. psychrophilum (CSF 259-93B.17) caused no disease in rainbow trout (Oncorhynchus mykiss, Walbaum) while inducing a protective immune response against challenge with the virulent CSF 259-93 strain. We hypothesized that rifampicin passage leads to an accumulation of genomic mutations that, by chance, reduce virulence. To assess the pattern of phenotypic and genotypic changes associated with passage, we examined proteomic, LPS and single-nucleotide polymorphism (SNP) differences for two F. psychrophilum strains (CSF 259-93 and THC 02-90) that were passaged with and without rifampicin selection.Rifampicin resistance was conveyed by expected mutations in rpoB, although affecting different DNA bases depending on the strain. One rifampicin-passaged CSF 259-93 strain (CR) was attenuated (4 % mortality) in challenged fish, but only accumulated eight nonsynonymous SNPs compared to the parent strain. A CSF 259-93 strain passaged without rifampicin (CN) accumulated five nonsynonymous SNPs and was partially attenuated (28 % mortality) compared to the parent strain (54.5 % mortality). In contrast, there were no significant change in fish mortalities among THC 02-90 wild-type and passaged strains, despite numerous SNPs accumulated during passage with (n?=?174) and without rifampicin (n?=?126). While only three missense SNPs were associated with attenuation, a Ser492Phe rpoB mutation in the CR strain may contribute to further attenuation. All strains except CR retained a gliding motility phenotype. Few proteomic differences were observed by 2D SDS-PAGE and there were no apparent changes in LPS between strains. Comparative methylome analysis of two strains (CR and TR) identified no shared methylation motifs for these two strains.Multiple genomic changes arose during passage experiments with rifampicin selection pressure. Consistent with our hypothesis, unique strain-specific mutations were detected for the fully attenuated (CR), partially attenuated (CN) and another fully attenuated strain (B17).


July 7, 2019

Complete genome and plasmid sequences of three Canadian strains of Salmonella enterica subsp. enterica serovar Enteritidis belonging to phage types 8, 13, and 13a.

Salmonella enterica subsp. enterica serovar Enteritidis is a prominent cause of human salmonellosis frequently linked to poultry products. In Canada, S. Enteritidis phage types 8, 13, and 13a predominate among both clinical and poultry isolates. Here, we report the complete genome and plasmid sequences of poultry isolates of these three phage types. Copyright © 2015 Rehman et al.


July 7, 2019

Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.

The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ~75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50 = 222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.


July 7, 2019

Genome sequence of a native-feather degrading extremely thermophilic Eubacterium, Fervidobacterium islandicum AW-1.

Fervidobacterium islandicum AW-1 (KCTC 4680) is an extremely thermophilic anaerobe isolated from a hot spring in Indonesia. This bacterium could degrade native chicken feathers completely at 70 °C within 48 h, which is of potential importance on the basis of relevant environmental and agricultural issues in bioremediation and development of eco-friendly bioprocesses for the treatment of native feathers. However, its genomic and phylogenetic analysis remains unclear. Here, we report the high-quality draft genome sequence of an extremely thermophilic anaerobe, F. islandicum AW-1. The genome consists of 2,359,755 bp, which encodes 2,184 protein-coding genes and 64 RNA-encoding genes. This may reveal insights into anaerobic metabolism for keratin degradation and also provide a biological option for poultry waste treatments.


July 7, 2019

Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis.

The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties. Copyright © 2015 Köberl et al.


July 7, 2019

CHOgenome.org 2.0: Genome resources and website updates.

Chinese hamster ovary (CHO) cells are a major host cell line for the production of therapeutic proteins, and CHO cell and Chinese hamster (CH) genomes have recently been sequenced using next-generation sequencing methods. CHOgenome.org was launched in 2011 (version 1.0) to serve as a database repository and to provide bioinformatics tools for the CHO community. CHOgenome.org (version 1.0) maintained GenBank CHO-K1 genome data, identified CHO-omics literature, and provided a CHO-specific BLAST service. Recent major updates to CHOgenome.org (version 2.0) include new sequence and annotation databases for both CHO and CH genomes, a more user-friendly website, and new research tools, including a proteome browser and a genome viewer. CHO cell-line specific sequences and annotations facilitate cell line development opportunities, several of which are discussed. Moving forward, CHOgenome.org will host the increasing amount of CHO-omics data and continue to make useful bioinformatics tools available to the CHO community. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019

The genus Brachypodium as a model for perenniality and polyploidy

The genus Brachypodium contains annual and perennial species with both diploid and polyploid genomes. Like the annual species B. distachyon, some of the perennial and polyploid species have traits compatible with use as a model system (e.g. small genomes, rapid generation time, self-fertile and easy to grow). Thus, there is an opportunity to leverage the resources and knowledge developed for B. distachyon to use other Brachypodium species as models for perenniality and the regulation and evolution of polyploid genomes. There are two factors driving an increased interest in perenniality. First, several perennial grasses are being developed as biomass crops for the sustainable production of biofuel and it would be useful to have a perennial model system to rapidly test biotechnological crop improvement strategies for undesirable impacts on perenniality and winter hardiness. In addition, a deeper understanding of the molecular mechanisms underlying perenniality could be used to design strategies for improving energy crops, for example, by changing resource allocation during growth or by altering the onset of dormancy. The second factor driving increased interest in perenniality is the potential environmental benefits of developing perennial grain crops. B. sylvaticum is a perennial with attributes suitable for use as a perennial model system. A high efficiency transformation system has been developed and a genome sequencing project is underway. Since many important crops, including emerging biomass crops, are polyploid, there is a pressing need to understand the rules governing the evolution and regulation of polyploid genomes. Unfortunately, it is difficult to study polyploid crop genomes because of their size and the difficulty of manipulating those plants in the laboratory. By contrast, B. hybridum has a small polyploid genome and is easy to work with in the laboratory. In addition, analysis of the B. hybridum genome, will be greatly aided by the genome sequences of the two extant diploid species (B. distachyon and B. stacei) that apparently gave rise to B. hybridum. Availability of high quality reference genomes for these three species will be a powerful resource for the study of polyploidy.


July 7, 2019

A synteny-based draft genome sequence of the forage grass Lolium perenne.

Here we report the draft genome sequence of perennial ryegrass (Lolium perenne), an economically important forage and turf grass species that is widely cultivated in temperate regions worldwide. It is classified along with wheat, barley, oats and Brachypodium distachyon in the Pooideae sub-family of the grass family (Poaceae). Transcriptome data was used to identify 28 455 gene models, and we utilized macro-co-linearity between perennial ryegrass and barley, and synteny within the grass family, to establish a synteny-based linear gene order. The gametophytic self-incompatibility mechanism enables the pistil of a plant to reject self-pollen and therefore promote out-crossing. We have used the sequence assembly to characterize transcriptional changes in the stigma during pollination with both compatible and incompatible pollen. Characterization of the pollen transcriptome identified homologs to pollen allergens from a range of species, many of which were expressed to very high levels in mature pollen grains, and are potentially involved in the self-incompatibility mechanism. The genome sequence provides a valuable resource for future breeding efforts based on genomic prediction, and will accelerate the development of new varieties for more productive grasslands.© 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.


July 7, 2019

PAFFT: A new homology search algorithm for third-generation sequencers.

DNA sequencers that can conduct real-time sequencing from a single polymerase molecule are known as third-generation sequencers. Third-generation sequencers enable sequencing of reads that are several kilobases long. However, the raw data generated from third-generation sequencers are known to be error-prone. Because of sequencing errors, it is difficult to identify which genes are homologous to the reads obtained using third-generation sequencers. In this study, a new method for homology search algorithm, PAFFT, is developed. This method is the extension of the MAFFT algorithm which was used for multiple alignments. PAFFT detects global homology rather than local homology so that homologous regions can be detected even when the error rate of sequencing is high. PAFFT will boost application of third-generation sequencers. Copyright © 2015 Elsevier Inc. All rights reserved.


July 7, 2019

First detection of Klebsiella variicola producing OXA-181 carbapenemase in fresh vegetable imported from Asia to Switzerland.

The emergence and worldwide spread of carbapenemase-producing Enterobacteriaceae is of great concern to public health services. The aim of this study was to investigate the occurrence of carbapenemase-producing Enterobacteriaceae in fresh vegetables and spices imported from Asia to Switzerland.Twenty-two different fresh vegetable samples were purchased in March 2015 from different retail shops specializing in Asian food. The vegetables included basil leaves, bergamont leaves, coriander, curry leaves, eggplant and okra (marrow). Samples had been imported from Thailand, the Socialist Republic of Vietnam and India. After an initial enrichment-step, carbapenemase-producing Enterobacteriaceae were isolated from two carbapenem-containing selective media (SUPERCARBA II and Brilliance CRE Agar). Isolates were screened by PCR for the presence of bla KPC, bla NDM, bla OXA-48-like and bla VIM. An OXA-181-producing Klebsiella variicola was isolated in a coriander sample with origin Thailand/Vietnam. The bla OXA-181 gene was encoded in a 14’027 bp region flanked by two IS26-like elements on a 51-kb IncX3-type plasmid.The results of this study suggest that the international production and trade of fresh vegetables constitute a possible route for the spread of carbapenemase-producing Enterobacteriaceae. The presence of carbapenemase-producing organisms in the food supply is alarming and an important food safety issue.


July 7, 2019

Complete genome of the marine bacterium Wenzhouxiangella marina KCTC 42284(T).

Wenzhouxiangella marina is an obligatory aerobic, Gram-negative, non-motile, rod-shaped bacterium that was isolated from the culture broth of marine microalgae, Picochlorum sp. 122. Here we report the 3.67 MB complete genome (65.26 G+C%) of W. marina KCTC 42284(T) encoding 3,016 protein-coding genes, 43 tRNAs and one rRNA operon. The genomic information supports multiple horizontal gene transfer (HGT) events in the history of W. marina, possibly with other marine bacteria co-existing in marine habitats. Evaluation of genomic signatures revealed 19 such HGT-derived genomic islands. Of these, eight were also supported by “genomic context” that refers to the existence of integrases, transposases and tmRNA genes either inside or in near vicinity to the island. The addition of W. marina genome expands the repertoire of marine bacterial genomic diversity, especially because the strain represents the sole genomic resource of a novel taxonomic family in the bacterial order Chromatiales. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

Jitterbug: somatic and germline transposon insertion detection at single-nucleotide resolution.

Transposable elements are major players in genome evolution. Transposon insertion polymorphisms can translate into phenotypic differences in plants and animals and are linked to different diseases including human cancer, making their characterization highly relevant to the study of genome evolution and genetic diseases. Here we present Jitterbug, a novel tool that identifies transposable element insertion sites at single-nucleotide resolution based on the pairedend mapping and clipped-read signatures produced by NGS alignments. Jitterbug can be easily integrated into existing NGS analysis pipelines, using the standard BAM format produced by frequently applied alignment tools (e.g. bwa, bowtie2), with no need to realign reads to a set of consensus transposon sequences. Jitterbug is highly sensitive and able to recall transposon insertions with a very high specificity, as demonstrated by benchmarks in the human and Arabidopsis genomes, and validation using long PacBio reads. In addition, Jitterbug estimates the zygosity of transposon insertions with high accuracy and can also identify somatic insertions. We demonstrate that Jitterbug can identify mosaic somatic transposon movement using sequenced tumor-normal sample pairs and allows for estimating the cancer cell fraction of clones containing a somatic TE insertion. We suggest that the independent methods we use to evaluate performance are a step towards creating a gold standard dataset for benchmarking structural variant prediction tools.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.