Menu
July 7, 2019

Identification and structural characterization of naturally-occurring broad-spectrum cyclic antibiotics isolated from Paenibacillus.

The rise of antimicrobial resistance necessitates the discovery and/or production of novel antibiotics. Isolated strains of Paenibacillus alvei were previously shown to exhibit antimicrobial activity against a number of pathogens, such as E. coli, Salmonella, and methicillin-resistant Staphylococcus aureus (MRSA). The responsible antimicrobial compounds were isolated from these Paenibacillus strains and a combination of low and high resolution mass spectrometry with multiple-stage tandem mass spectrometry was used for identification. A group of closely related cyclic lipopeptides was identified, differing primarily by fatty acid chain length and one of two possible amino acid substitutions. Variation in the fatty acid length resulted in mass differences of 14 Da and yielded groups of related MS(n) spectra. Despite the inherent complexity of MS/MS spectra of cyclic compounds, straightforward analysis of these spectra was accomplished by determining differences in complementary product ion series between compounds that differ in molecular weight by 14 Da. The primary peptide sequence assignment was confirmed through genome mining; the combination of these analytical tools represents a workflow that can be used for the identification of complex antibiotics. The compounds also share amino acid sequence similarity to a previously identified broad-spectrum antibiotic isolated from Paenibacillus. The presence of such a wide distribution of related compounds produced by the same organism represents a novel class of broad-spectrum antibiotic compounds.


July 7, 2019

Whole genome sequence of Pseudomonas aeruginosa F9676, an antagonistic bacterium isolated from rice seed.

Pseudomonas aeruginosa is a group of bacteria, which can be isolated from diverse ecological niches. P. aeruginosa strain F9676 was first isolated from a rice seed sample in 2003. It showed strong antagonism against several plant pathogens. In this study, whole genome sequencing was carried out. The total genome size of F9676 is 6368,008bp with 5586 coding genes (CDS), 67 tRNAs and 3 rRNAs. The genome sequence of F9676 may shed a light on antagonism P. aeruginosa. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

Draft genome sequence of Paenibacillus polymyxa strain Mc5Re-14, an antagonistic root endophyte of Matricaria chamomilla.

Paenibacillus polymyxa strain Mc5Re-14 was isolated from the inner root tissue of Matricaria chamomilla (German chamomile). Mc5Re-14 revealed promising in vitro antagonistic activity against plant and opportunistic human pathogens. The 6.0-Mb draft genome reveals genes putatively involved in pathogen suppression and direct and indirect plant growth promotion. Copyright © 2015 Köberl et al.


July 7, 2019

Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae.

Pineapple (Ananas comosus var. comosus) is known as the king of fruits for its crown and is the third most important tropical fruit after banana and citrus. The plant, which is indigenous to South America, is the most important species in the Bromeliaceae family and is largely traded for fresh fruit consumption. Here, we report the complete chloroplast sequence of the MD-2 pineapple that was sequenced using the PacBio sequencing technology.In this study, the high error rate of PacBio long sequence reads of A. comosus’s total genomic DNA were improved by leveraging on the high accuracy but short Illumina reads for error-correction via the latest error correction module from Novocraft. Error corrected long PacBio reads were assembled by using a single tool to produce a contig representing the pineapple chloroplast genome. The genome of 159,636 bp in length is featured with the conserved quadripartite structure of chloroplast containing a large single copy region (LSC) with a size of 87,482 bp, a small single copy region (SSC) with a size of 18,622 bp and two inverted repeat regions (IRA and IRB) each with the size of 26,766 bp. Overall, the genome contained 117 unique coding regions and 30 were repeated in the IR region with its genes contents, structure and arrangement similar to its sister taxon, Typha latifolia. A total of 35 repeats structure were detected in both the coding and non-coding regions with a majority being tandem repeats. In addition, 205 SSRs were detected in the genome with six protein-coding genes contained more than two SSRs. Comparative chloroplast genomes from the subclass Commelinidae revealed a conservative protein coding gene albeit located in a highly divergence region. Analysis of selection pressure on protein-coding genes using Ka/Ks ratio showed significant positive selection exerted on the rps7 gene of the pineapple chloroplast with P less than 0.05. Phylogenetic analysis confirmed the recent taxonomical relation among the member of commelinids which support the monophyly relationship between Arecales and Dasypogonaceae and between Zingiberales to the Poales, which includes the A. comosus.The complete sequence of the chloroplast of pineapple provides insights to the divergence of genic chloroplast sequences from the members of the subclass Commelinidae. The complete pineapple chloroplast will serve as a reference for in-depth taxonomical studies in the Bromeliaceae family when more species under the family are sequenced in the future. The genetic sequence information will also make feasible other molecular applications of the pineapple chloroplast for plant genetic improvement.


July 7, 2019

Identification of the genomic insertion site of the thyroid peroxidase promoter-Cre recombinase transgene using a novel, efficient, next-generation DNA sequencing method.

It can be useful to know the transgene insertion site in transgenic mice for a variety of reasons, but determining the insertion site generally is a time consuming, expensive, and laborious task.A simple method is presented to determine transgene insertion sites that combines the enrichment of a sequencing library by polymerase chain reaction (PCR) for sequences containing the transgene, followed by next-generation sequencing of the enriched library. This method was applied to determine the site of integration of the thyroid peroxidase promoter-Cre recombinase mouse transgene that is commonly used to create thyroid-specific gene deletions.The insertion site was found to be between bp 12,372,316 and 12,372,324 on mouse chromosome 9, with the nearest characterized genes being Cntn5 and Jrkl, ~1.5 and 0.9?Mbp from the transgene, respectively. One advantage of knowing a transgene insertion site is that it facilitates distinguishing hemizygous from homozygous transgenic mice. Although this can be accomplished by real-time quantitative PCR, the expected Ct difference is only one cycle, which is challenging to assess accurately. Therefore, the transgene insertion site information was used to develop a 3-primer qualitative PCR assay that readily distinguishes wild type, hemizygous, and homozygous TPO-Cre mice based upon size differences of the wild type and transgenic allele PCR products.Identification of the genomic insertion site of the thyroid peroxidase promoter-Cre mouse transgene should facilitate the use of these mice in studies of thyroid biology.


July 7, 2019

The genome of the Saprophytic fungus Verticillium tricorpus reveals a complex effector repertoire resembling that of its pathogenic relatives.

Vascular wilts caused by Verticillium spp. are destructive plant diseases affecting hundreds of hosts. Only a few Verticillium spp. are causal agents of vascular wilt diseases, of which V. dahliae is the most notorious pathogen, and several V. dahliae genomes are available. In contrast, V. tricorpus is mainly known as a saprophyte and causal agent of opportunistic infections. Based on a hybrid approach that combines second and third generation sequencing, a near-gapless V. tricorpus genome assembly was obtained. With comparative genomics, we sought to identify genomic features in V. dahliae that confer the ability to cause vascular wilt disease. Unexpectedly, both species encode similar effector repertoires and share a genomic structure with genes encoding secreted proteins clustered in genomic islands. Intriguingly, V. tricorpus contains significantly fewer repetitive elements and an extended spectrum of secreted carbohydrate- active enzymes when compared with V. dahliae. In conclusion, we highlight the technical advances of a hybrid sequencing and assembly approach and show that the saprophyte V. tricorpus shares many hallmark features with the pathogen V. dahliae.


July 7, 2019

Retrohoming of a mobile group II intron in human cells suggests how eukaryotes limit group II intron proliferation.

Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a “ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed “retrohoming”. Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the evolution of introns and gene expression mechanisms.


July 7, 2019

Complete genome sequences of low-passage virulent and high-passage avirulent variants of pathogenic Leptospira interrogans serovar Manilae strain UP-MMC-NIID, originally isolated from a patient with severe leptospirosis, determined using PacBio Single-Molecule Real-Time technology.

Here, we report the complete genome sequences of low-passage virulent and high-passage avirulent variants of pathogenic Leptospira interrogans serovar Manilae strain UP-MMC-NIID, a major causative agent of leptospirosis. While there were no major differences between the genome sequences, the levels of base modifications were higher in the avirulent variant. Copyright © 2015 Satou et al.


July 7, 2019

Complete genome sequence of Acinetobacter baumannii strain B8342, a motility-positive clinical isolate.

Acinetobacter baumannii is an emerging Gram-negative pathogen responsible for health care-associated infections. In this study, we determined the genome of a motility-positive clinical strain, B8342, isolated from a hospital in southern India. The B8342 genome, which is 3.94 Mbp, was generated by de novo assembly of PacBio long-read sequencing data. Copyright © 2015 Vijaykumar et al.


July 7, 2019

Comparative genomics and characterization of hybrid Shigatoxigenic and enterotoxigenic Escherichia coli (STEC/ETEC) strains.

Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor.The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied.The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only.This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.


July 7, 2019

Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia.

Vibrio anguillarum causes a fatal hemorrhagic septicemia in marine fish that leads to great economical losses in aquaculture world-wide. Vibrio anguillarum strain NB10 serotype O1 is a Gram-negative, motile, curved rod-shaped bacterium, isolated from a diseased fish on the Swedish coast of the Gulf of Bothnia, and is slightly halophilic. Strain NB10 is a virulent isolate that readily colonizes fish skin and intestinal tissues. Here, the features of this bacterium are described and the annotation and analysis of its complete genome sequence is presented. The genome is 4,373,835 bp in size, consists of two circular chromosomes and one plasmid, and contains 3,783 protein-coding genes and 129 RNA genes.


July 7, 2019

Complete genome sequence of Bacillus thuringiensis HS18-1.

Bacillus thuringiensis is a spore-forming bacterium that is a type of insect pathogen used in the field of microbial insect control. B. thuringiensis HS18-1 has effective toxicity for Lepidoptera and Diptera insects. It contains different types of parasporal crystal genes, including cry4Cb1, cry50Aa1, cry69Ab1, cry30Ga, cry30Ea, cry70Aa, cry71Aa, cry72Aa, cry56Aa and cry54Ba. Here, we report the complete genome sequence of B. thuringiensis HS18-1, which contains one circular gapless chromosome and nine circular plasmids. Copyright © 2015. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.