Menu
April 21, 2020

Genome assembly and annotation of the Trichoplusia ni Tni-FNL insect cell line enabled by long-read technologies.

Trichoplusiani derived cell lines are commonly used to enable recombinant protein expression via baculovirus infection to generate materials approved for clinical use and in clinical trials. In order to develop systems biology and genome engineering tools to improve protein expression in this host, we performed de novo genome assembly of the Trichoplusiani-derived cell line Tni-FNL.By integration of PacBio single-molecule sequencing, Bionano optical mapping, and 10X Genomics linked-reads data, we have produced a draft genome assembly of Tni-FNL.Our assembly contains 280 scaffolds, with a N50 scaffold size of 2.3 Mb and a total length of 359 Mb. Annotation of the Tni-FNL genome resulted in 14,101 predicted genes and 93.2% of the predicted proteome contained recognizable protein domains. Ortholog searches within the superorder Holometabola provided further evidence of high accuracy and completeness of the Tni-FNL genome assembly.This first draft Tni-FNL genome assembly was enabled by complementary long-read technologies and represents a high-quality, well-annotated genome that provides novel insight into the complexity of this insect cell line and can serve as a reference for future large-scale genome engineering work in this and other similar recombinant protein production hosts.


April 21, 2020

The Versatility of SMRT Sequencing.

The adoption of single molecule real-time (SMRT) sequencing [1] is becoming widespread, not only in basic science, but also in more applied areas such as agricultural, environmental, and medical research. SMRT sequencing offers important advantages over current short-read DNA sequencing technologies, including exceptionally long read lengths (20 kb or more), unparalleled consensus accuracy, and the ability to sequence native, non-amplified, DNA molecules. These sequencing characteristics enable creation of highly accurate de novo genome assemblies, characterization of complex structural variation, direct characterization of nucleotide base modifications, full-length RNA isoform sequencing, phasing of genetic variants, low frequency mutation detection, and clonal evolution determination [2,3]. This Special Issue of Genes is a collection of articles showcasing the latest developments and the breadth of applications enabled by SMRT sequencing technology.


April 21, 2020

Shared and unique microbes between Small hive beetles (Aethina tumida) and their honey bee hosts.

The small hive beetle (SHB) is an opportunistic parasite that feeds on bee larvae, honey, and pollen. While SHBs can also feed on fruit and other plant products, like its plant-feeding relatives, SHBs prefer to feed on hive resources and only reproduce inside bee colonies. As parasites, SHBs are inevitably exposed to bee-associated microbes, either directly from the bees or from the hive environment. These microbes have unknown impacts on beetles, nor is it known how extensively beetles transfer microbes among their bee hosts. To identify sets of beetle microbes and the transmission of microbes from bees to beetles, a metagenomic analysis was performed. We identified sets of herbivore-associated bacteria, as well as typical bee symbiotic bacteria for pollen digestion, in SHB larvae and adults. Deformed wing virus was highly abundant in beetles, which colonize SHBs as suggested by a controlled feeding trial. Our data suggest SHBs are vectors for pathogen transmission among bees and between colonies. The dispersal of host pathogens by social parasites via floral resources and the hive environment increases the threats of these parasites to honey bees. © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020

Sensitivity to the two peptide bacteriocin plantaricin EF is dependent on CorC, a membrane-bound, magnesium/cobalt efflux protein.

Lactic acid bacteria produce a variety of antimicrobial peptides known as bacteriocins. Most bacteriocins are understood to kill sensitive bacteria through receptor-mediated disruptions. Here, we report on the identification of the Lactobacillus plantarum plantaricin EF (PlnEF) receptor. Spontaneous PlnEF-resistant mutants of the PlnEF-indicator strain L. plantarum NCIMB 700965 (LP965) were isolated and confirmed to maintain cellular ATP levels in the presence of PlnEF. Genome comparisons resulted in the identification of a single mutated gene annotated as the membrane-bound, magnesium/cobalt efflux protein CorC. All isolates contained a valine (V) at position 334 instead of a glycine (G) in a cysteine-ß-synthase domain at the C-terminal region of CorC. In silico template-based modeling of this domain indicated that the mutation resides in a loop between two ß-strands. The relationship between PlnEF, CorC, and metal homeostasis was supported by the finding that PlnEF-resistance was lost when PlnEF was applied together with high concentrations of Mg2+ , Co2+ , Zn2+ , or Cu2+ . Lastly, PlnEF sensitivity was increased upon heterologous expression of LP965 corC but not the G334V CorC mutant in the PlnEF-resistant strain Lactobacillus casei BL23. These results show that PlnEF kills sensitive bacteria by targeting CorC. © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020

Genes of the pig, Sus scrofa, reconstructed with EvidentialGene.

The pig is a well-studied model animal of biomedical and agricultural importance. Genes of this species, Sus scrofa, are known from experiments and predictions, and collected at the NCBI reference sequence database section. Gene reconstruction from transcribed gene evidence of RNA-seq now can accurately and completely reproduce the biological gene sets of animals and plants. Such a gene set for the pig is reported here, including human orthologs missing from current NCBI and Ensembl reference pig gene sets, additional alternate transcripts, and other improvements. Methodology for accurate and complete gene set reconstruction from RNA is used: the automated SRA2Genes pipeline of EvidentialGene project.


April 21, 2020

Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus.

Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.


April 21, 2020

Infection mechanisms and putative effector repertoire of the mosquito pathogenic oomycete Pythium guiyangense uncovered by genomic analysis.

Pythium guiyangense, an oomycete from a genus of mostly plant pathogens, is an effective biological control agent that has wide potential to manage diverse mosquitoes. However, its mosquito-killing mechanisms are almost unknown. In this study, we observed that P. guiyangense could utilize cuticle penetration and ingestion of mycelia into the digestive system to infect mosquito larvae. To explore pathogenic mechanisms, a high-quality genome sequence with 239 contigs and an N50 contig length of 1,009 kb was generated. The genome assembly is approximately 110 Mb, which is almost twice the size of other sequenced Pythium genomes. Further genome analysis suggests that P. guiyangense may arise from a hybridization of two related but distinct parental species. Phylogenetic analysis demonstrated that P. guiyangense likely evolved from common ancestors shared with plant pathogens. Comparative genome analysis coupled with transcriptome sequencing data suggested that P. guiyangense may employ multiple virulence mechanisms to infect mosquitoes, including secreted proteases and kazal-type protease inhibitors. It also shares intracellular Crinkler (CRN) effectors used by plant pathogenic oomycetes to facilitate the colonization of plant hosts. Our experimental evidence demonstrates that CRN effectors of P. guiyangense can be toxic to insect cells. The infection mechanisms and putative virulence effectors of P. guiyangense uncovered by this study provide the basis to develop improved mosquito control strategies. These data also provide useful knowledge on host adaptation and evolution of the entomopathogenic lifestyle within the oomycete lineage. A deeper understanding of the biology of P. guiyangense effectors might also be useful for management of other important agricultural pests.


April 21, 2020

Comprehensive transcriptome analysis reveals genes potentially involved in isoflavone biosynthesis in Pueraria thomsonii Benth.

Pueraria thomsonii Benth is an important medicinal plant. Transcriptome sequencing, unigene assembly, the annotation of transcripts and the study of gene expression profiles play vital roles in gene function research. However, the full-length transcriptome of P. thomsonii remains unknown. Here, we obtained 44,339 nonredundant transcripts of P. thomsonii by using the PacBio RS II Isoform and Illumina sequencing platforms, of which 43,195 were annotated genes. Compared with the expression levels in the plant roots, those of transcripts with a |fold change| = 4 and FDR < 0.01 in the leaves or stems were assigned as differentially expressed transcripts (DETs). In total, we found 9,225 DETs, 32 of which came from structural genes that were potentially involved in isoflavone biosynthesis. The expression profiles of 8 structural genes from the RNA-Seq data were validated by qRT-PCR. We identified 437 transcription factors (TFs) that were positively or negatively correlated with at least 1 of the structural genes involved in isoflavone biosynthesis using Pearson correlation coefficients (r) (r > 0.8 or r < -0.8). We also identified a total of 32 microRNAs (miRNAs), which targeted 805 transcripts. These miRNAs caused enriched function in 'ATP binding', 'defense response', 'ADP binding', and 'signal transduction'. Interestingly, MIR156a potentially promoted isoflavone biosynthesis by repressing SBP, and MIR319 promoted isoflavone biosynthesis by repressing TCP and HB-HD-ZIP. Finally, we identified 2,690 alternative splicing events, including that of the structural genes of trans-cinnamate 4-monooxygenase and pullulanase, which are potentially involved in the biosynthesis of isoflavone and starch, respectively, and of three TFs potentially involved in isoflavone biosynthesis. Together, these results provide us with comprehensive insight into the gene expression and regulation of P. thomsonii.


April 21, 2020

A whole genome scan of SNP data suggests a lack of abundant hard selective sweeps in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum.

The pathogenic fungus Sclerotinia sclerotiorum infects over 600 species of plant. It is present in numerous environments throughout the world and causes significant damage to many agricultural crops. Fragmentation and lack of gene flow between populations may lead to population sub-structure. Within discrete recombining populations, positive selection may lead to a ‘selective sweep’. This is characterised by an increase in frequency of a favourable allele leading to reduction in genotypic diversity in a localised genomic region due to the phenomenon of genetic hitchhiking. We aimed to assess whether isolates of S. sclerotiorum from around the world formed genotypic clusters associated with geographical origin and to determine whether signatures of population-specific positive selection could be detected. To do this, we sequenced the genomes of 25 isolates of S. sclerotiorum collected from four different continents-Australia, Africa (north and south), Europe and North America (Canada and the northen United States) and conducted SNP based analyses of population structure and selective sweeps. Among the 25 isolates, there was evidence for two major population clusters. One of these consisted of 11 isolates from Canada, the USA and France (population 1), and the other consisted of nine isolates from Australia and one from Morocco (population 2). The rest of the isolates were genotypic outliers. We found that there was evidence of outcrossing in these two populations based on linkage disequilibrium decay. However, only a single candidate selective sweep was observed, and it was present in population 2. This sweep was close to a Major Facilitator Superfamily transporter gene, and we speculate that this gene may have a role in nutrient uptake from the host. The low abundance of selective sweeps in the S. sclerotiorum genome contrasts the numerous examples in the genomes of other fungal pathogens. This may be a result of its slow rate of evolution and low effective recombination rate due to self-fertilisation and vegetative reproduction.


April 21, 2020

Whole-Genome Sequences of Two Pseudoalteromonas piscicida Strains, DE1-A and DE2-A, with Strong Antibacterial Activity against Vibrio vulnificus.

Highly vesiculated Pseudoalteromonas piscicida strains DE1-A and DE2-A were isolated from seawater and show bactericidal properties toward Vibrio vulnificus and other Gram-positive and Gram-negative bacteria. Here, we report the complete genome sequences of these two P. piscicida strains and identify proteolytic enzymes potentially involved in their antibacterial properties.


April 21, 2020

Complete Genome Sequences of Four Salmonella enterica Strains (Including Those of Serotypes Montevideo, Mbandaka, and Lubbock) Isolated from Peripheral Lymph Nodes of Healthy Cattle.

Salmonella enterica serotype Lubbock emerged most likely from a Salmonella enterica serotype Mbandaka ancestor that acquired by recombination the fliC operon from Salmonella enterica serotype Montevideo. Here, we report the complete genome sequence of two S. Lubbock, one S. Montevideo, and one S. Mbandaka strain isolated from bovine lymph nodes.


April 21, 2020

Complete Genome Sequence of Salmonella enterica Serovar Enteritidis NCM 61, with High Potential for Biofilm Formation, Isolated from Meat-Related Sources.

Here, we report the complete genome sequence of strain NMC 61 of Salmonella enterica serovar Enteritidis, which was previously isolated from conveyor belts during chicken slaughter and has the potential to form biofilms on several surfaces. The genome is predicted to contain 110 noncoding small RNAs on the chromosome.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.