Menu
July 7, 2019  |  

Novel FANCI mutations in Fanconi anemia with VACTERL association.

Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by mutations in DNA repair genes; some of these patients may have features of the VACTERL association. Autosomal recessive mutations in FANCI are a rare cause of FA. We identified FANCI mutations by next generation sequencing in three patients in our FA cohort among several whose mutated gene was unknown. Four of the six mutations are novel and all mutations are likely deleterious to protein function. There are now 16 reported cases of FA due to FANCI of whom 7 have at least 3 features of the VACTERL association (44%). This suggests that the VACTERL association in patients with FA may be seen in patients with FANCI mutations more often than previously recognized. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.


July 7, 2019  |  

Timing, rates and spectra of human germline mutation.

Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations.


July 7, 2019  |  

Complete sequences of multidrug resistance plasmids bearing rmtD1 and rmtD2 16S ribosomal RNA methyltransferase genes.

Complete nucleotide sequences were determined for two plasmids bearing rmtD group 16S rRNA methyltransferase genes. pKp64/11 was 78 kb in size, belonged to the IncL/M group, and harbored blaTEM-1b, sul1, qacE?1, dfrA22, and rmtD1 across two multidrug resistance regions (MRRs). pKp368/10 was 170 kb in size, belonged to the IncA/C group, and harbored acrB, sul1, qacE?1, ant(3?)-Ia, aac(6′)-Ib, cat, rmtD2, and blaCTX-M-8 across three MRRs. The rmtD-containing regions shared a conserved motif, suggesting a common origin for the two rmtD alleles. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Refinement of the canine CD1 locus topology and investigation of antibody binding to recombinant canine CD1 isoforms.

CD1 molecules are antigen-presenting glycoproteins primarily found on dendritic cells (DCs) responsible for lipid antigen presentation to CD1-restricted T cells. Despite their pivotal role in immunity, little is known about CD1 protein expression in dogs, notably due to lack of isoform-specific antibodies. The canine (Canis familiaris) CD1 locus was previously found to contain three functional CD1A genes: canCD1A2, canCD1A6, and canCD1A8, where two variants of canCD1A8, canCD1A8.1 and canCD1A8.2, were assumed to be allelic variants. However, we hypothesized that these rather represented two separate genes. Sequencing of three overlapping bacterial artificial chromosomes (BACs) spanning the entire canine CD1 locus revealed canCD1A8.2 and canCD1A8.1 to be located in tandem between canCD1A7 and canCD1C, and canCD1A8.1 was consequently renamed canCD1A9. Green fluorescent protein (GFP)-fused canine CD1 transcripts were recombinantly expressed in 293T cells. All proteins showed a highly positive GFP expression except for canine CD1d and a splice variant of canine CD1a8 lacking exon 3. Probing with a panel of anti-CD1 monoclonal antibodies (mAbs) showed that Ca13.9H11 and Ca9.AG5 only recognized canine CD1a8 and CD1a9 isoforms, and Fe1.5F4 mAb solely recognized canine CD1a6. Anti-CD1b mAbs recognized the canine CD1b protein, but also bound CD1a2, CD1a8, and CD1a9. Interestingly, Ca9.AG5 showed allele specificity based on a single nucleotide polymorphism (SNP) located at position 321. Our findings have refined the structure of the canine CD1 locus and available antibody specificity against canine CD1 proteins. These are important fundamentals for future investigation of the role of canine CD1 in lipid immunity.


July 7, 2019  |  

Comparative analysis of an IncR plasmid carrying armA, blaDHA-1 and qnrB4 from Klebsiella pneumoniae ST37 isolates.

The objective of this study was to conduct a comparative analysis with reported IncR plasmids of a Klebsiella pneumoniae IncR plasmid carrying an MDR region.MDR K. pneumoniae isolates were serially identified from two inpatients at a hospital in the USA in 2014. MDR plasmid pYDC676 was fully sequenced, annotated and compared with related plasmids. Antimicrobial susceptibility testing, PFGE and MLST were also conducted.The K. pneumoniae isolates were identical by PFGE, belonged to ST37 and harboured an identical ~50 kb IncR plasmid (pYDC676). pYDC676 possessed the backbone and multi-IS loci closely related to IncR plasmids reported from aquatic bacteria, as well as animal and human K. pneumoniae strains, and carried an MDR region consisting of armA, blaDHA-1 and qnrB4, a combination that has been reported in IncR plasmids from K. pneumoniae ST11 strains in Europe and Asia. A plasmid with the identical IncR backbone and a similar MDR region containing blaDHA-1 and qnrB4 has also been reported in ST37 strains from Europe, suggesting potential dissemination of this lineage of IncR plasmids in K. pneumoniae ST37.K. pneumoniae ST37 strains with an MDR IncR plasmid carrying armA, blaDHA-1 and qnrB4 were identified in a hospital in the USA, where these resistance genes remain rare. The IncR backbone may play a role in the global dissemination of these resistance genes.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Environmental changes bridge evolutionary valleys.

In the basic fitness landscape metaphor for molecular evolution, evolutionary pathways are presumed to follow uphill steps of increasing fitness. How evolution can cross fitness valleys is an open question. One possibility is that environmental changes alter the fitness landscape such that low-fitness sequences reside on a hill in alternate environments. We experimentally test this hypothesis on the antibiotic resistance gene TEM-15 ß-lactamase by comparing four evolutionary strategies shaped by environmental changes. The strategy that included initial steps of selecting for low antibiotic resistance (negative selection) produced superior alleles compared with the other three strategies. We comprehensively examined possible evolutionary pathways leading to one such high-fitness allele and found that an initially deleterious mutation is key to the allele’s evolutionary history. This mutation is an initial gateway to an otherwise relatively inaccessible area of sequence space and participates in higher-order, positive epistasis with a number of neutral to slightly beneficial mutations. The ability of negative selection and environmental changes to provide access to novel fitness peaks has important implications for natural evolutionary mechanisms and applied directed evolution.


July 7, 2019  |  

Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts.

Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.


July 7, 2019  |  

Precision medicine and rare genetic variants.

Interindividual variability in drug metabolism and drug toxicity persists as a major problem for drug development and treatment. Increased or decreased capacity for drug elimination or drug action reduces drug efficacy and places substantial economic burdens on society (e.g., due to treatment of adverse drug reactions) [1]. To a great extent this variation is based on genetic differences, and indeed many drugs now carry pharmacogenomic labels regarding mandatory or informative genetic tests that have to/can be performed before prescription (http://www.fda.gov/drugs/ scienceresearch/researchareas/pharmacogenetics/ucm083378.htm).Theselabelsarebasedonthe most common allelic variants in germline or somatic genes with importance for drug metabolism that encode phase I or phase II enzymes, transporters, or drug targets. In many cases, particularly in oncology, these labels are major determinants of successful treatment. However, the question arises of to what extent these labels are useful for future precision medicine encompassing specific patients carrying mutations not commonly seen in the whole population.


July 7, 2019  |  

Population structure and acquisition of the vanB resistance determinant in German clinical isolates of Enterococcus faecium ST192.

In the context of the global action plan to reduce the dissemination of antibiotic resistances it is of utmost importance to understand the population structure of resistant endemic bacterial lineages and to elucidate how bacteria acquire certain resistance determinants. Vancomycin resistant enterococci represent one such example of a prominent nosocomial pathogen on which nation-wide population analyses on prevalent lineages are scarce and data on how the bacteria acquire resistance, especially of the vanB genotype, are still under debate. With respect to Germany, an increased prevalence of VRE was noted in recent years. Here, invasive infections caused by sequence type ST192 VRE are often associated with the vanB-type resistance determinant. Hence, we analyzed 49 vanB-positive and vanB-negative E. faecium isolates by means of whole genome sequencing. Our studies revealed a distinct population structure and that spread of the Tn1549-vanB-type resistance involves exchange of large chromosomal fragments between vanB-positive and vanB-negative enterococci rather than independent acquisition events. In vitro filter-mating experiments support the hypothesis and suggest the presence of certain target sequences as a limiting factor for dissemination of the vanB element. Thus, the present study provides a better understanding of how enterococci emerge into successful multidrug-resistant nosocomial pathogens.


July 7, 2019  |  

The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis.

A majority of Ardisia species harbour Burkholderia sp. bacteria within specialized leaf nodules. The bacteria are transmitted hereditarily and have not yet been cultured outside of their host. Because the plants cannot develop beyond the seedling stage without their symbionts, the symbiosis is considered obligatory. We sequenced for the first time the genome of Candidatus Burkholderia crenata (Ca. B. crenata), the leaf nodule symbiont of Ardisia crenata. The genome of Ca. B. crenata is the smallest Burkholderia genome to date. It contains a large amount of insertion sequences and pseudogenes and displays features consistent with reductive genome evolution. The genome does not encode functions commonly associated with plant symbioses such as nitrogen fixation and plant hormone metabolism. However, we identified unique genes with a predicted role in secondary metabolism in the genome of Ca. B. crenata. Specifically, we provide evidence that the bacterial symbionts are responsible for the synthesis of compound FR900359, a cyclic depsipeptide with biomedical properties previously isolated from leaves of A.?crenata. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

The Cer-cqu gene cluster determines three key players in a ß-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes.

Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley – Cer-c, Cer-q and Cer-u – known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of ß-diketone and hydroxy-ß-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.


July 7, 2019  |  

Filling in the gap of human chromosome 4: Single Molecule Real Time sequencing of macrosatellite repeats in the facioscapulohumeral muscular dystrophy locus.

A majority of facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of macrosatellite repeats called D4Z4 that are located in the subtelomeric region of human chromosome 4q35. Sequencing the FSHD locus has been technically challenging due to its long size and nearly identical nature of repeat elements. Here we report sequencing and partial assembly of a BAC clone carrying an entire FSHD locus by a single molecule real time (SMRT) sequencing technology which could produce long reads up to about 18 kb containing D4Z4 repeats. De novo assembly by Hierarchical Genome Assembly Process 1 (HGAP.1) yielded a contig of 41 kb containing all but a part of the most distal D4Z4 element. The validity of the sequence model was confirmed by an independent approach employing anchored multiple sequence alignment by Kalign using reads containing unique flanking sequences. Our data will provide a basis for further optimization of sequencing and assembly conditions of D4Z4.


July 7, 2019  |  

High quality maize centromere 10 sequence reveals evidence of frequent recombination events.

The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10(-6) and 5 × 10(-5) for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb from the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length CR from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB) repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. In many cases examined here, DSB repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to efficiently repair frequent DSBs in centromeres.


July 7, 2019  |  

BAC-pool sequencing and assembly of 19 Mb of the complex sugarcane genome.

Sequencing plant genomes are often challenging because of their complex architecture and high content of repetitive sequences. Sugarcane has one of the most complex genomes. It is highly polyploid, preserves intact homeologous chromosomes from its parental species and contains >55% repetitive sequences. Although bacterial artificial chromosome (BAC) libraries have emerged as an alternative for accessing the sugarcane genome, sequencing individual clones is laborious and expensive. Here, we present a strategy for sequencing and assembly reads produced from the DNA of pooled BAC clones. A set of 178 BAC clones, randomly sampled from the SP80-3280 sugarcane BAC library, was pooled and sequenced using the Illumina HiSeq2000 and PacBio platforms. A hybrid assembly strategy was used to generate 2,451 scaffolds comprising 19.2 MB of assembled genome sequence. Scaffolds of =20 Kb corresponded to 80% of the assembled sequences, and the full sequences of forty BACs were recovered in one or two contigs. Alignment of the BAC scaffolds with the chromosome sequences of sorghum showed a high degree of collinearity and gene order. The alignment of the BAC scaffolds to the 10 sorghum chromosomes suggests that the genome of the SP80-3280 sugarcane variety is ~19% contracted in relation to the sorghum genome. In conclusion, our data show that sequencing pools composed of high numbers of BAC clones may help to construct a reference scaffold map of the sugarcane genome.


July 7, 2019  |  

Single-locus enrichment without amplification for sequencing and direct detection of epigenetic modifications.

A gene-level targeted enrichment method for direct detection of epigenetic modifications is described. The approach is demonstrated on the CGG-repeat region of the FMR1 gene, for which large repeat expansions, hitherto refractory to sequencing, are known to cause fragile X syndrome. In addition to achieving a single-locus enrichment of nearly 700,000-fold, the elimination of all amplification steps removes PCR-induced bias in the repeat count and preserves the native epigenetic modifications of the DNA. In conjunction with the single-molecule real-time sequencing approach, this enrichment method enables direct readout of the methylation status and the CGG repeat number of the FMR1 allele(s) for a clonally derived cell line. The current method avoids potential biases introduced through chemical modification and/or amplification methods for indirect detection of CpG methylation events.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.