Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.


Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.


You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
August 1, 2015

Acetylcholinesterase 1 in populations of organophosphate-resistant North American strains of the cattle tick, Rhipicephalus microplus (Acari: Ixodidae).

Rhipicephalus microplus, the cattle fever tick, is a global economic problem to the cattle industry due to direct infestation of cattle and pathogens transmitted during feeding. Cattle fever tick outbreaks continue to occur along the Mexico-US border even though the tick has been eradicated from the USA. The organophosphate (OP) coumaphos targets acetylcholinesterase (AChE) and is the approved acaricide for eradicating cattle fever tick outbreaks. There is evidence for coumaphos resistance developing in cattle ticks in Mexico, and OP-resistant R. microplus ticks were discovered in outbreak populations of Texas in 2005. The molecular basis of coumaphos resistance is not known,…

Read More »

July 1, 2015

Genomes of ‘Candidatus Liberibacter solanacearum’ Haplotype A from New Zealand and the United States Suggest Significant Genome Plasticity in the Species.

'Candidatus Liberibacter solanacearum' contains two solanaceous crop-infecting haplotypes, A and B. Two haplotype A draft genomes were assembled and compared with ZC1 (haplotype B), revealing inversion and relocation genomic rearrangements, numerous single-nucleotide polymorphisms, and differences in phage-related regions. Differences in prophage location and sequence were seen both within and between haplotype comparisons. OrthoMCL and BLAST analyses identified 46 putative coding sequences present in haplotype A that were not present in haplotype B. Thirty-eight of these loci were not found in sequences from other Liberibacter spp. Quantitative polymerase chain reaction (qPCR) assays designed to amplify sequences from 15 of these loci…

Read More »

June 1, 2015

High-quality draft genome sequence of actinobacterium Kibdelosporangium sp. MJ126-NF4, producer of type II polyketide azicemicins, using Illumina and PacBio Technologies.

Here, we report the high-quality draft genome sequence of actinobacterium Kibdelosporangium sp. MJ126-NF4, producer of the type II polyketide azicemicins, obtained using Illumina and PacBio sequencing technologies. The 11.75-Mbp genome contains >11,000 genes and 22 polyketide and nonribosomal peptide natural product gene clusters. Copyright © 2015 Ogasawara et al.

Read More »

April 1, 2015

A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop.

Field pennycress (Thlaspi arvense L.) is being domesticated as a new winter cover crop and biofuel species for the Midwestern United States that can be double-cropped between corn and soybeans. A genome sequence will enable the use of new technologies to make improvements in pennycress. To generate a draft genome, a hybrid sequencing approach was used to generate 47 Gb of DNA sequencing reads from both the Illumina and PacBio platforms. These reads were used to assemble 6,768 genomic scaffolds. The draft genome was annotated using the MAKER pipeline, which identified 27,390 predicted protein-coding genes, with almost all of these…

Read More »

March 1, 2015

Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri.

Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a…

Read More »

January 1, 2015

Analysis of a draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing bafilomycin antibiotics.

Kitasatospora cheerisanensis KCTC 2395, producing bafilomycin antibiotics belonging to plecomacrolide group, was isolated from a soil sample at Mt. Jiri, Korea. The draft genome sequence contains 8.04 Mb with 73.6% G+C content and 7,810 open reading frames. All the genes for aerial mycelium and spore formations were confirmed in this draft genome. In phylogenetic analysis of MurE proteins (UDP-N-acetylmuramyl-L-alanyl-D-glutamate:DAP ligase) in a conserved dcw (division of cell wall) locus, MurE proteins of Kitasatospora species were placed in a separate clade between MurEs of Streptomyces species incorporating LL-diaminopimelic acid (DAP) and MurEs of Saccharopolyspora erythraea as well as Mycobacterium tuberculosis ligating…

Read More »

September 5, 2014

The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera.

Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393?Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140?My. We show that fusion chromosomes have retained the ancestral chromosome segments and…

Read More »

June 1, 2014

SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information.

The recent introduction of the Pacific Biosciences RS single molecule sequencing technology has opened new doors to scaffolding genome assemblies in a cost-effective manner. The long read sequence information is promised to enhance the quality of incomplete and inaccurate draft assemblies constructed from Next Generation Sequencing (NGS) data.Here we propose a novel hybrid assembly methodology that aims to scaffold pre-assembled contigs in an iterative manner using PacBio RS long read information as a backbone. On a test set comprising six bacterial draft genomes, assembled using either a single Illumina MiSeq or Roche 454 library, we show that even a 50×…

Read More »

January 10, 2014

Getting the most out of your PacBio libraries with size selection.

PacBio RS II sequencing chemistries provide read lengths beyond 20 kb with high consensus accuracy. The long read lengths of P4-C2 chemistry and demonstrated consensus accuracy of 99.999% are ideal for applications such as de novo assembly, targeted sequencing and isoform sequencing. The recently launched P5-C3 chemistry generates even longer reads with N50 often >10,000 bp, making it the best choice for scaffolding and spanning structural rearrangements. With these chemistry advances, PacBio’s read length performance is now primarily determined by the SMRTbell library itself. Size selection of a high-quality, sheared 20 kb library using the BluePippin™ System has been demonstrated…

Read More »

November 1, 2013

Combining de novo and reference-guided assembly with scaffold_builder.

Genome sequencing has become routine, however genome assembly still remains a challenge despite the computational advances in the last decade. In particular, the abundance of repeat elements in genomes makes it difficult to assemble them into a single complete sequence. Identical repeats shorter than the average read length can generally be assembled without issue. However, longer repeats such as ribosomal RNA operons cannot be accurately assembled using existing tools. The application Scaffold_builder was designed to generate scaffolds - super contigs of sequences joined by N-bases - based on the similarity to a closely related reference sequence. This is independent of…

Read More »

September 1, 2013

L_RNA_scaffolder: scaffolding genomes with transcripts.

Generation of large mate-pair libraries is necessary for de novo genome assembly but the procedure is complex and time-consuming. Furthermore, in some complex genomes, it is hard to increase the N50 length even with large mate-pair libraries, which leads to low transcript coverage. Thus, it is necessary to develop other simple scaffolding approaches, to at least solve the elongation of transcribed fragments.We describe L_RNA_scaffolder, a novel genome scaffolding method that uses long transcriptome reads to order, orient and combine genomic fragments into larger sequences. To demonstrate the accuracy of the method, the zebrafish genome was scaffolded. With expanded human transcriptome…

Read More »

July 1, 2013

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species.

The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.In Assemblathon 2, we provided a variety of sequence data to…

Read More »

December 1, 2012

Genome sequence of “Candidatus Microthrix parvicella” Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a biological wastewater treatment plant.

Candidatus Microthrix bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: "Candidatus Microthrix parvicella" strain Bio17-1.

Read More »

July 1, 2012

Next generation sequencing technologies and the changing landscape of phage genomics.

The dawn of next generation sequencing technologies has opened up exciting possibilities for whole genome sequencing of a plethora of organisms. The 2nd and 3rd generation sequencing technologies, based on cloning-free, massively parallel sequencing, have enabled the generation of a deluge of genomic sequences of both prokaryotic and eukaryotic origin in the last seven years. However, whole genome sequencing of bacterial viruses has not kept pace with this revolution, despite the fact that their genomes are orders of magnitude smaller in size compared with bacteria and other organisms. Sequencing phage genomes poses several challenges; (1) obtaining pure phage genomic material,…

Read More »

1 4 5 6

Subscribe for blog updates: