X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing.

Single-molecule real-time (SMRT) DNA sequencing allows the systematic detection of chemical modifications such as methylation but has not previously been applied on a genome-wide scale. We used this approach to detect 49,311 putative 6-methyladenine (m6A) residues and 1,407 putative 5-methylcytosine (m5C) residues in the genome of a pathogenic Escherichia coli strain. We obtained strand-specific information for methylation sites and a quantitative assessment of the frequency of methylation at each modified position. We deduced the sequence motifs recognized by the methyltransferase enzymes present in this strain without prior knowledge of their specificity. Furthermore, we found that deletion of a phage-encoded methyltransferase-endonuclease…

Read More »

Friday, July 19, 2019

Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia.

Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published.A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G + C content of…

Read More »

Friday, July 19, 2019

Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing.

DNA methylation is the most common form of DNA modification in prokaryotic and eukaryotic genomes. We have applied the method of single-molecule, real-time (SMRT) DNA sequencing that is capable of direct detection of modified bases at single-nucleotide resolution to characterize the specificity of several bacterial DNA methyltransferases (MTases). In addition to previously described SMRT sequencing of N6-methyladenine and 5-methylcytosine, we show that N4-methylcytosine also has a specific kinetic signature and is therefore identifiable using this approach. We demonstrate for all three prokaryotic methylation types that SMRT sequencing confirms the identity and position of the methylated base in cases where the…

Read More »

Friday, July 19, 2019

In vivo generation of DNA sequence diversity for cellular barcoding.

Heterogeneity is a ubiquitous feature of biological systems. A complete understanding of such systems requires a method for uniquely identifying and tracking individual components and their interactions with each other. We have developed a novel method of uniquely tagging individual cells in vivo with a genetic ‘barcode’ that can be recovered by DNA sequencing. Our method is a two-component system comprised of a genetic barcode cassette whose fragments are shuffled by Rci, a site-specific DNA invertase. The system is highly scalable, with the potential to generate theoretical diversities in the billions. We demonstrate the feasibility of this technique in Escherichia…

Read More »

Friday, July 19, 2019

Detecting DNA modifications from SMRT sequencing data by modeling sequence context dependence of polymerase kinetic.

DNA modifications such as methylation and DNA damage can play critical regulatory roles in biological systems. Single molecule, real time (SMRT) sequencing technology generates DNA sequences as well as DNA polymerase kinetic information that can be used for the direct detection of DNA modifications. We demonstrate that local sequence context has a strong impact on DNA polymerase kinetics in the neighborhood of the incorporation site during the DNA synthesis reaction, allowing for the possibility of estimating the expected kinetic rate of the enzyme at the incorporation site using kinetic rate information collected from existing SMRT sequencing data (historical data) covering…

Read More »

Friday, July 19, 2019

New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis.

Acinetobacter baumannii is a globally important nosocomial pathogen characterized by an increasing incidence of multidrug resistance. Routes of dissemination and gene flow among health care facilities are poorly resolved and are important for understanding the epidemiology of A. baumannii, minimizing disease transmission, and improving patient outcomes. We used whole-genome sequencing to assess diversity and genome dynamics in 49 isolates from one United States hospital system during one year from 2007 to 2008. Core single-nucleotide-variant-based phylogenetic analysis revealed multiple founder strains and multiple independent strains recovered from the same patient yet was insufficient to fully resolve strain relationships, where gene content…

Read More »

Friday, July 19, 2019

Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain.

Multidrug-resistant Enterobacteriaceae are emerging as a serious infectious disease challenge. These strains can accumulate many antibiotic resistance genes though horizontal transfer of genetic elements, those for ß-lactamases being of particular concern. Some ß-lactamases are active on a broad spectrum of ß-lactams including the last-resort carbapenems. The gene for the broad-spectrum and carbapenem-active metallo-ß-lactamase NDM-1 is rapidly spreading. We present the complete genome of Klebsiella pneumoniae ATCC BAA-2146, the first U.S. isolate found to encode NDM-1, and describe its repertoire of antibiotic-resistance genes and mutations, including genes for eight ß-lactamases and 15 additional antibiotic-resistance enzymes. To elucidate the evolution of this…

Read More »

Friday, July 19, 2019

Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT Sequencing and associated methylome analysis.

Bifidobacterium animalis subsp. lactis CNCM I-2494 is a component of a commercialized fermented dairy product for which beneficial effects on health has been studied by clinical and preclinical trials. To date little is known about the molecular mechanisms that could explain the beneficial effects that bifidobacteria impart to the host. Restriction-modification (R-M) systems have been identified as key obstacles in the genetic accessibility of bifidobacteria, and circumventing these is a prerequisite to attaining a fundamental understanding of bifidobacterial attributes, including the genes that are responsible for health-promoting properties of this clinically and industrially important group of bacteria. The complete genome…

Read More »

Friday, July 19, 2019

Comparative genomic analysis and virulence differences in closely related Salmonella enterica serotype Heidelberg isolates from humans, retail meats, and animals.

Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. Recently, an antibiotic-resistant strain of this serovar was implicated in a large 2011 multistate outbreak resulting from consumption of contaminated ground turkey that involved 136 confirmed cases, with one death. In this study, we assessed the evolutionary diversity of 44 S. Heidelberg isolates using whole-genome sequencing (WGS) generated by the 454 GS FLX (Roche) platform. The isolates, including 30 with nearly indistinguishable (one band difference) Xbal pulsed-field gel electrophoresis patterns (JF6X01.0032, JF6X01.0058), were collected from various sources between 1982 and 2011 and included…

Read More »

Friday, July 19, 2019

Population structure of KPC-producing Klebsiella pneumoniae isolates from midwestern U.S. hospitals.

Genome sequencing of carbapenem-resistant Klebsiella pneumoniae isolates from regional U.S. hospitals was used to characterize strain diversity and the bla(KPC) genetic context. A phylogeny based on core single-nucleotide variants (SNVs) supports a division of sequence type 258 (ST258) into two distinct groups. The primary differences between the groups are in the capsular polysaccharide locus (cps) and their plasmid contents. A strict association between clade and KPC variant was found. The bla(KPC) gene was found on variants of two plasmid backbones. This study indicates that highly similar K. pneumoniae subpopulations coexist within the same hospitals over time. Copyright © 2014, American…

Read More »

Friday, July 19, 2019

Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae.

Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full…

Read More »

Friday, July 19, 2019

Transmission of methicillin-resistant Staphylococcus aureus via deceased donor liver transplantation confirmed by whole genome sequencing.

Donor-derived bacterial infection is a recognized complication of solid organ transplantation (SOT). The present report describes the clinical details and successful outcome in a liver transplant recipient despite transmission of methicillin-resistant Staphylococcus aureus (MRSA) from a deceased donor with MRSA endocarditis and bacteremia. We further describe whole genome sequencing (WGS) and complete de novo assembly of the donor and recipient MRSA isolate genomes, which confirms that both isolates are genetically 100% identical. We propose that similar application of WGS techniques to future investigations of donor bacterial transmission would strengthen the definition of proven bacterial transmission in SOT, particularly in the…

Read More »

Friday, July 19, 2019

Vertical transmission of highly similar bla CTX-M-1-harboring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid.

The purpose of this study was to characterize sets of extended-spectrum ß-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter.Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The bla CTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis.Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder…

Read More »

Friday, July 19, 2019

Comparison of genome sequencing technology and assembly methods for the analysis of a GC-rich bacterial genome.

Improvements in technology and decreases in price have made de novo bacterial genomic sequencing a reality for many researchers, but it has created a need to evaluate the methods for generating a complete and accurate genome assembly. We sequenced the GC-rich Caulobacter henricii genome using the Illumina MiSeq, Roche 454, and Pacific Biosciences RS II sequencing systems. To generate a complete genome sequence, we performed assemblies using eight readily available programs and found that builds using the Illumina MiSeq and the Roche 454 data produced accurate yet numerous contigs. SPAdes performed the best followed by PANDAseq. In contrast, the Celera…

Read More »

Friday, July 19, 2019

A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data.

Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA) in the United States, and that strain’s association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organism. Pacific Biosciences’ Single Molecule, Real-Time sequencing technology was used to explore the variation in the genome-wide methylation patterns of the abortifacient clone SA (IA3902) and phenotypically distinct gastrointestinal-specific C. jejuni strains (NCTC 11168 and 81-176). Several notable differences were discovered that…

Read More »

1 2 3 34

Subscribe for blog updates:

Archives