Menu
July 19, 2019  |  

Evolution of hypervirulence by a MRSA clone through acquisition of a transposable element.

Staphylococcus aureus has evolved as a pathogen that causes a range of diseases in humans. There are two dominant modes of evolution thought to explain most of the virulence differences between strains. First, virulence genes may be acquired from other organisms. Second, mutations may cause changes in the regulation and expression of genes. Here we describe an evolutionary event in which transposition of an IS element has a direct impact on virulence gene regulation resulting in hypervirulence. Whole-genome analysis of a methicillin-resistant S. aureus (MRSA) strain USA500 revealed acquisition of a transposable element (IS256) that is absent from close relatives of this strain. Of the multiple copies of IS256 found in the USA500 genome, one was inserted in the promoter sequence of repressor of toxins (Rot), a master transcriptional regulator responsible for the expression of virulence factors in S. aureus. We show that insertion into the rot promoter by IS256 results in the derepression of cytotoxin expression and increased virulence. Taken together, this work provides new insight into evolutionary strategies by which S. aureus is able to modify its virulence properties and demonstrates a novel mechanism by which horizontal gene transfer directly impacts virulence through altering toxin regulation. © 2014 John Wiley & Sons Ltd.


July 19, 2019  |  

Genome sequencing and comparative genomics provides insights on the evolutionary dynamics and pathogenic potential of different H-serotypes of Shiga toxin-producing Escherichia coli O104.

Various H-serotypes of the Shiga toxin-producing Escherichia coli (STEC) O104, including H4, H7, H21, and H¯, have been associated with sporadic cases of illness and have caused food-borne outbreaks globally. In the U.S., STEC O104:H21 caused an outbreak associated with milk in 1994. However, there is little known on the evolutionary origins of STEC O104 strains, and how genotypic diversity contributes to pathogenic potential of various O104 H-antigen serotypes isolated from different ecological niches and/or geographical regions.Two STEC O104:H21 (milk outbreak strain) and O104:H7 (cattle isolate) strains were shot-gun sequenced, and the genomes were closed. The intimin (eae) gene, involved in the attaching-effacing phenotype of diarrheagenic E. coli, was not found in either strain. Examining various O104 genome sequences, we found that two “complete” left and right end portions of the locus of enterocyte effacement (LEE) pathogenicity island were present in 13 O104 strains; however, the central portion of LEE was missing, where the eae gene is located. In O104:H4 strains, the missing central portion of the LEE locus was replaced by a pathogenicity island carrying the aidA (adhesin involved in diffuse adherence) gene and antibiotic resistance genes commonly carried on plasmids. Enteroaggregative E. coli-specific virulence genes and European outbreak O104:H4-specific stx2-encoding Escherichia P13374 or Escherichia TL-2011c bacteriophages were missing in some of the O104:H4 genome sequences available from public databases. Most of the genomic variations in the strains examined were due to the presence of different mobile genetic elements, including prophages and genomic island regions. The presence of plasmids carrying virulence-associated genes may play a role in the pathogenic potential of O104 strains.The two strains sequenced in this study (O104:H21 and O104:H7) are genetically more similar to each other than to the O104:H4 strains that caused an outbreak in Germany in 2011 and strains found in Central Africa. A hypothesis on strain evolution and pathogenic potential of various H-serotypes of E. coli O104 strains is proposed.


July 19, 2019  |  

Complete genome sequence and analysis of Lactobacillus hokkaidonensis LOOC260(T), a psychrotrophic lactic acid bacterium isolated from silage.

Lactobacillus hokkaidonensis is an obligate heterofermentative lactic acid bacterium, which is isolated from Timothy grass silage in Hokkaido, a subarctic region of Japan. This bacterium is expected to be useful as a silage starter culture in cold regions because of its remarkable psychrotolerance; it can grow at temperatures as low as 4°C. To elucidate its genetic background, particularly in relation to the source of psychrotolerance, we constructed the complete genome sequence of L. hokkaidonensis LOOC260(T) using PacBio single-molecule real-time sequencing technology.The genome of LOOC260(T) comprises one circular chromosome (2.28 Mbp) and two circular plasmids: pLOOC260-1 (81.6 kbp) and pLOOC260-2 (41.0 kbp). We identified diverse mobile genetic elements, such as prophages, integrated and conjugative elements, and conjugative plasmids, which may reflect adaptation to plant-associated niches. Comparative genome analysis also detected unique genomic features, such as genes involved in pentose assimilation and NADPH generation.This is the first complete genome in the L. vaccinostercus group, which is poorly characterized, so the genomic information obtained in this study provides insight into the genetics and evolution of this group. We also found several factors that may contribute to the ability of L. hokkaidonensis to grow at cold temperatures. The results of this study will facilitate further investigation for the cold-tolerance mechanism of L. hokkaidonensis.


July 19, 2019  |  

Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition.

Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Complete nucleotide sequences of bla(CTX-M)-harboring IncF plasmids from community-associated Escherichia coli strains in the United States.

Community-associated infections due to Escherichia coli producing CTX-M-type extended-spectrum ß-lactamases are increasingly recognized in the United States. The bla(CTX-M) genes are frequently carried on IncF group plasmids. In this study, bla(CTX-M-15)-harboring plasmids pCA14 (sequence type 131 [ST131]) and pCA28 (ST44) and bla(CTX-M-14)-harboring plasmid pCA08 (ST131) were sequenced and characterized. The three plasmids were closely related to other IncFII plasmids from continents outside the United States in the conserved backbone region and multiresistance regions (MRRs). Each of the bla(CTX-M-15)-carrying plasmids pCA14 and pCA28 belonged to F31:A4:B1 (FAB [FII, FIA, FIB] formula) and showed a high level of similarity (92% coverage of pCA14 and 99% to 100% nucleotide identity), suggesting a possible common origin. The blaC(TX-M-14)-carrying plasmid pCA08 belonged to F2:A2:B20 and was highly similar to pKF3-140 from China (88% coverage of pCA08 and 99% to 100% nucleotide identity). All three plasmids carried multiple antimicrobial resistance genes and modules associated with virulence and biochemical pathways, which likely confer selective advantages for their host strains. The bla(CTX-M)-carrying IncFII-IA-IB plasmids implicated in community-associated infections in the United States shared key structural features with those identified from other continents, underscoring the global nature of this plasmid epidemic. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Genome modification in Enterococcus faecalis OG1RF assessed by bisulfite sequencing and Single-Molecule Real-Time Sequencing.

Enterococcus faecalis is a Gram-positive bacterium that natively colonizes the human gastrointestinal tract and opportunistically causes life-threatening infections. Multidrug-resistant (MDR) E. faecalis strains have emerged, reducing treatment options for these infections. MDR E. faecalis strains have large genomes containing mobile genetic elements (MGEs) that harbor genes for antibiotic resistance and virulence determinants. Bacteria commonly possess genome defense mechanisms to block MGE acquisition, and we hypothesize that these mechanisms have been compromised in MDR E. faecalis. In restriction-modification (R-M) defense, the bacterial genome is methylated at cytosine (C) or adenine (A) residues by a methyltransferase (MTase), such that nonself DNA can be distinguished from self DNA. A cognate restriction endonuclease digests improperly modified nonself DNA. Little is known about R-M in E. faecalis. Here, we use genome resequencing to identify DNA modifications occurring in the oral isolate OG1RF. OG1RF has one of the smallest E. faecalis genomes sequenced to date and possesses few MGEs. Single-molecule real-time (SMRT) and bisulfite sequencing revealed that OG1RF has global 5-methylcytosine (m5C) methylation at 5′-GCWGC-3′ motifs. A type II R-M system confers the m5C modification, and disruption of this system impacts OG1RF electrotransformability and conjugative transfer of an antibiotic resistance plasmid. A second DNA MTase was poorly expressed under laboratory conditions but conferred global N(4)-methylcytosine (m4C) methylation at 5′-CCGG-3′ motifs when expressed in Escherichia coli. Based on our results, we conclude that R-M can act as a barrier to MGE acquisition and likely influences antibiotic resistance gene dissemination in the E. faecalis species.The horizontal transfer of antibiotic resistance genes among bacteria is a critical public health concern. Enterococcus faecalis is an opportunistic pathogen that causes life-threatening infections in humans. Multidrug resistance acquired by horizontal gene transfer limits treatment options for these infections. In this study, we used innovative DNA sequencing methodologies to investigate how a model strain of E. faecalis discriminates its own DNA from foreign DNA, i.e., self versus nonself discrimination. We also assess the role of an E. faecalis genome modification system in modulating conjugative transfer of an antibiotic resistance plasmid. These results are significant because they demonstrate that differential genome modification impacts horizontal gene transfer frequencies in E. faecalis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Complete bypass of restriction systems for major Staphylococcus aureus lineages.

Staphylococcus aureus is a prominent global nosocomial and community-acquired bacterial pathogen. A strong restriction barrier presents a major hurdle for the introduction of recombinant DNA into clinical isolates of S. aureus. Here, we describe the construction and characterization of the IMXXB series of Escherichia coli strains that mimic the type I adenine methylation profiles of S. aureus clonal complexes 1, 8, 30, and ST93. The IMXXB strains enable direct, high-efficiency transformation and streamlined genetic manipulation of major S. aureus lineages.The genetic manipulation of clinical S. aureus isolates has been hampered due to the presence of restriction modification barriers that detect and subsequently degrade inappropriately methylated DNA. Current methods allow the introduction of plasmid DNA into a limited subset of S. aureus strains at high efficiency after passage of plasmid DNA through the restriction-negative, modification-proficient strain RN4220. Here, we have constructed and validated a suite of E. coli strains that mimic the adenine methylation profiles of different clonal complexes and show high-efficiency plasmid DNA transfer. The ability to bypass RN4220 will reduce the cost and time involved for plasmid transfer into S. aureus. The IMXXB series of E. coli strains should expedite the process of mutant construction in diverse genetic backgrounds and allow the application of new techniques to the genetic manipulation of S. aureus. Copyright © 2015 Monk et al.


July 19, 2019  |  

Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition.

Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions, including replicon fusions, DNA inversions, and deletions. Replicative transposition could also be inferred for transposon Tn4401, which harbors the carbapenemase blaKPC gene. Thus, replicative transposition is important in the ongoing reorganization of plasmids carrying multidrug-resistant determinants, an observation that carries substantial clinical and epidemiological implications for understanding how such extreme drug resistance phenotypes evolve.Although IS26 is frequently reported to reside in resistance plasmids of clinical isolates, the characteristic hallmark of transposition, target site duplication (TSD), is generally not observed, raising questions about the mode of transposition for IS26. The previous observation of cointegrate formation during transposition implies that IS26 transposes via a replicative mechanism. The other possible outcome of replicative transposition is DNA inversion or deletion, when transposition occurs intramolecularly, and this would also generate a specific TSD pattern that might also serve as supporting evidence for the transposition mechanism. The numerous examples we present here demonstrate that replicative transposition, used by many mobile elements (including IS26 and Tn4401), is prevalent in the plasmids of clinical isolates and results in significant plasmid reorganization. This study also provides a method to trace the evolution of resistance plasmids based on TSD patterns. Copyright © 2015 He et al.


July 19, 2019  |  

Recurrent methicillin-resistant Staphylococcus aureus cutaneous abscesses and selection of reduced chlorhexidine susceptibility during chlorhexidine use.

We describe the selection of reduced chlorhexidine susceptibility during chlorhexidine use in a patient with two episodes of cutaneous USA300 methicillin-resistant Staphylococcus aureus abscess. The second clinical isolate harbors a novel plasmid that encodes the QacA efflux pump. Greater use of chlorhexidine for disease prevention warrants surveillance for resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae.

Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-blaOXA-181 mobile element, one of which has disrupted the mgrB regulatory gene, accounting for resistance to colistin. Our findings provide the first description of pandrug-resistant CRE at the genomic level, and reveal the critical role of mobile resistance elements in accelerating the emergence of resistance to other last resort antibiotics.


July 19, 2019  |  

Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants.

Small molecules produced by Actinobacteria have played a prominent role in both drug discovery and organic chemistry. As part of a larger study of the actinobacterial symbionts of fungus-growing ants, we discovered a small family of three previously unreported piperazic acid-containing cyclic depsipeptides, gerumycins A-C. The gerumycins are slightly smaller versions of dentigerumycin, a cyclic depsipeptide that selectively inhibits a common fungal pathogen, Escovopsis. We had previously identified this molecule from a Pseudonocardia associated with Apterostigma dentigerum, and now we report the molecule from an associate of the more highly derived ant Trachymyrmex cornetzi. The three previously unidentified compounds, gerumycins A-C, have essentially identical structures and were produced by two different symbiotic Pseudonocardia spp. from ants in the genus Apterostigma found in both Panama and Costa Rica. To understand the similarities and differences in the biosynthetic pathways that produced these closely related molecules, the genomes of the three producing Pseudonocardia were sequenced and the biosynthetic gene clusters identified. This analysis revealed that dramatically different biosynthetic architectures, including genomic islands, a plasmid, and the use of spatially separated genetic loci, can lead to molecules with virtually identical core structures. A plausible evolutionary model that unifies these disparate architectures is presented.


July 19, 2019  |  

Lineage-specific methyltransferases define the methylome of the globally disseminated Escherichia coli ST131 clone.

Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three (m6)A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for (m6)A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located.DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone. Copyright © 2015 Forde et al.


July 19, 2019  |  

Large genomic differences between Moraxella bovoculi isolates acquired from the eyes of cattle with infectious bovine keratoconjunctivitis versus the deep nasopharynx of asymptomatic cattle.

Moraxella bovoculi is a recently described bacterium that is associated with infectious bovine keratoconjunctivitis (IBK) or “pinkeye” in cattle. In this study, closed circularized genomes were generated for seven M. bovoculi isolates: three that originated from the eyes of clinical IBK bovine cases and four from the deep nasopharynx of asymptomatic cattle. Isolates that originated from the eyes of IBK cases profoundly differed from those that originated from the nasopharynx of asymptomatic cattle in genome structure, gene content and polymorphism diversity and consequently placed into two distinct phylogenetic groups. These results suggest that there are genetically distinct strains of M. bovoculi that may not associate with IBK.


July 19, 2019  |  

Detection and whole genome sequencing of carbapenemase-producing Aeromonas hydrophila isolated from routine perirectal surveillance culture.

Perirectal surveillance cultures and a stool culture grew Aeromonas species from three patients over a six-week period without epidemiological links. Detection of the blaKPC-2 gene in one isolate prompted inclusion of non-Enterobacteriaceae in our surveillance culture workup. Whole genome sequencing confirmed isolates were unrelated, and provided data for Aeromonas reference genomes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.