X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
March 1, 2016

Complete Sequences and Characterization of Two Novel Plasmids Carrying aac(6′)-Ib-cr and qnrS Gene in Shigella flexneri.

The complete sequences of two previously reported plasmids carrying plasmid-mediated quinolone resistance genes from Shigella flexneri in China have not been available. The present study using the p5-C3 assembly method revealed that (1) the plasmid pSF07201 with aac(6')-Ib-cr had 75,335?bp with antibiotic resistance genes CTX-M-3, TEM-1, and FosA3; (2) seven fragments of pSF07201 had more than 99% homology with the seven corresponding plasmids; (3) the other plasmid pSF07202 with qnrS had 47,669?bp with antibiotic resistance gene TEM-1 and 99.95% homology with a segment of pKF362122, which has the qnrS gene from location 162,490 to 163,146. A conjugation and electrotransformation experiment…

Read More »

March 1, 2016

Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum.

Ralstonia solanacearum is one of the most lethal phytopathogens in the world. Due to its broad host range, it can cause wilting disease in many plant species of economic interest. In this work, we identified the O-oligosaccharyltransferase (O-OTase) responsible for protein O-glycosylation in R. solanacearum. An analysis of the glycoproteome revealed that 20 proteins, including type IV pilins are substrates of this general glycosylation system. Although multiple glycan forms were identified, the majority of the glycopeptides were modified with a pentasaccharide composed of HexNAc-(Pen)-dHex3, similar to the O antigen subunit present in the lipopolysaccharide of multiple R. solanacearum strains. Disruption…

Read More »

March 1, 2016

Complete sequences of multidrug resistance plasmids bearing rmtD1 and rmtD2 16S ribosomal RNA methyltransferase genes.

Complete nucleotide sequences were determined for two plasmids bearing rmtD group 16S rRNA methyltransferase genes. pKp64/11 was 78 kb in size, belonged to the IncL/M group, and harbored blaTEM-1b, sul1, qacE?1, dfrA22, and rmtD1 across two multidrug resistance regions (MRRs). pKp368/10 was 170 kb in size, belonged to the IncA/C group, and harbored acrB, sul1, qacE?1, ant(3?)-Ia, aac(6')-Ib, cat, rmtD2, and blaCTX-M-8 across three MRRs. The rmtD-containing regions shared a conserved motif, suggesting a common origin for the two rmtD alleles. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

Read More »

March 1, 2016

Dissemination of the mcr-1 colistin resistance gene.

Since our first report on plasmid- mediated colistin resistance gene mcr-1,1 strains previously collected in seven countries (Denmark, the Netherlands, Laos, Nigeria, Thailand, France, and the UK) have been found to carry mcr-1.2–6 Furthermore, the sequences in GenBank show that mcr-1 might also be circulating in Portugal and Malaysia. The earliest mcr-1- positive strain was collected from cattle in France in 2008 (GenBank accession number LMBK01000308). These findings confirm our initial concern that mcr-1 could have already disseminated worldwide.

Read More »

February 23, 2016

Population structure and acquisition of the vanB resistance determinant in German clinical isolates of Enterococcus faecium ST192.

In the context of the global action plan to reduce the dissemination of antibiotic resistances it is of utmost importance to understand the population structure of resistant endemic bacterial lineages and to elucidate how bacteria acquire certain resistance determinants. Vancomycin resistant enterococci represent one such example of a prominent nosocomial pathogen on which nation-wide population analyses on prevalent lineages are scarce and data on how the bacteria acquire resistance, especially of the vanB genotype, are still under debate. With respect to Germany, an increased prevalence of VRE was noted in recent years. Here, invasive infections caused by sequence type ST192…

Read More »

January 1, 2016

Characterization of ESBL disseminating plasmids.

Bacteria producing extended-spectrum ß-lactamases (ESBLs) constitute a globally increasing problem that contributes to treatment complications and elevated death rates. The extremely successful dissemination by ESBL-producing Enterobacteriaceae during the latest decades is a result of the combination of mobilization, evolution and horizontal spread of ß-lactamase genes on plasmids. In parallel, spread of these plasmids to particularly well-adapted bacterial clones (outbreak clones) has expanded. In this review we describe ESBL-producing bacteria and the genetic mechanisms for dissemination of ESBL resistance. We describe available methodology for studying plasmids and the importance of including plasmids in epidemiological typing as natural parts of the organisms.…

Read More »

December 7, 2015

IncI1 plasmids encoding various blaCTX-Ms contributed to ceftriaxone resistance in Salmonella Enteritidis in China.

Resistance to extended spectrum ß-lactams in Salmonella, in particular serotypes such as S. Enteritidis that are frequently associated with clinical infections, is a serious public health concern. In this study, phenotypic characterization of 433 clinical S. Enteritidis strains obtained from a nationwide collection of China CDC during the period of 2005~2010 depicted an increasing trend of resistance to ceftriaxone from 2008 onwards. Seventeen (4%) of the strains were found to be resistant to ceftriaxone, 7% to ciprofloxacin and 0.7% to both ciprofloxacin and ceftriaxone. Most of the ceftriaxone-resistant S. Enteritidis strains (15/17) were genetically unrelated, and originated from Henan province.…

Read More »

December 4, 2015

Genomic epidemiology of an endoscope-associated outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae.

Increased incidence of infections due to Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) was noted among patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) at a single hospital. An epidemiologic investigation identified KPC-Kp and non-KPC-producing, extended-spectrum ß-lactamase (ESBL)-producing Kp in cultures from 2 endoscopes. Genotyping was performed on patient and endoscope isolates to characterize the microbial genomics of the outbreak. Genetic similarity of 51 Kp isolates from 37 patients and 3 endoscopes was assessed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Five patient and 2 endoscope isolates underwent whole genome sequencing (WGS). Two KPC-encoding plasmids were characterized by single…

Read More »

December 1, 2015

Molecular characterization using next generation sequencing of plasmids containing blaNDM-7 in Enterobacteriaceae from Calgary, Canada.

Enterobacteriaceae with blaNDM-7 is relatively uncommon and had previously been described in Europe, India, USA and Japan. This study describes the characteristics of Enterobacteriaceae [Klebsiella pneumoniae (n=2), Escherichia coli (n=2), Serratia marcescens (n=1), Enterobacter hormaechei (n=1)] with blaNDM-7 obtained in 4 patients from Calgary, Canada during 2013-4. The 46,161 bp IncX3 plasmids with blaNDM-7 are highly similar to other blaNDM-harboring IncX3 plasmids and interestingly, showed identical structures within the different isolates. This finding may indicate horizontal transmission within our health region or may indicate contact with individuals from endemic areas within the hospital setting. Patients infected or colonized with bacteria…

Read More »

November 1, 2015

Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance.

Carbapenemases are a major concern for the treatment of infectious diseases caused by Gram-negative bacteria. Although plasmids are responsible for the spread of resistance genes among these pathogens, there is limited information on the nature of the mobile genetic elements carrying carbapenemases in Pseudomonas aeruginosa.We combined data from two different next-generation sequencing platforms, Illumina HiSeq2000 and PacBio RSII, to obtain the complete nucleotide sequences of two blaVIM-1-carrying plasmids (pAMBL1 and pAMBL2) isolated from P. aeruginosa clinical isolates.Plasmid pAMBL1 has 26?440 bp and carries a RepA_C family replication protein. pAMBL1 is similar to plasmids pNOR-2000 and pKLC102 from P. aeruginosa and…

Read More »

November 1, 2015

Fosfomycin resistance in Escherichia coli, Pennsylvania, USA.

Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum ß-lactamase-producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described.

Read More »

October 6, 2015

First detection of Klebsiella variicola producing OXA-181 carbapenemase in fresh vegetable imported from Asia to Switzerland.

The emergence and worldwide spread of carbapenemase-producing Enterobacteriaceae is of great concern to public health services. The aim of this study was to investigate the occurrence of carbapenemase-producing Enterobacteriaceae in fresh vegetables and spices imported from Asia to Switzerland.Twenty-two different fresh vegetable samples were purchased in March 2015 from different retail shops specializing in Asian food. The vegetables included basil leaves, bergamont leaves, coriander, curry leaves, eggplant and okra (marrow). Samples had been imported from Thailand, the Socialist Republic of Vietnam and India. After an initial enrichment-step, carbapenemase-producing Enterobacteriaceae were isolated from two carbapenem-containing selective media (SUPERCARBA II and Brilliance…

Read More »

August 1, 2015

Retrohoming of a mobile group II intron in human cells suggests how eukaryotes limit group II intron proliferation.

Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a "ribozyme") and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed "retrohoming". Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse…

Read More »

July 1, 2015

Development of an orthogonal fatty acid biosynthesis system in E. coli for oleochemical production.

Here we report recombinant expression and activity of several type I fatty acid synthases that can function in parallel with the native Escherichia coli fatty acid synthase. Corynebacterium glutamicum FAS1A was the most active in E. coli and this fatty acid synthase was leveraged to produce oleochemicals including fatty alcohols and methyl ketones. Coexpression of FAS1A with the ACP/CoA-reductase Maqu2220 from Marinobacter aquaeolei shifted the chain length distribution of fatty alcohols produced. Coexpression of FAS1A with FadM, FadB, and an acyl-CoA-oxidase from Micrococcus luteus resulted in the production of methyl ketones, although at a lower level than cells using the…

Read More »

July 1, 2015

A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii.

Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the…

Read More »

1 3 4 5 6

Subscribe for blog updates:

Archives