X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, February 26, 2021

Genomic Architecture of the KIR and MHC-B and -C Regions in Orangutan

PacBio 2013 User Group Meeting Presentation Slides: Lisbeth Guethlein from Stanford University School of Medicine looked at highly repetitive and variable immune regions of the orangutan genome. Guethlein reported that “PacBio managed to accomplish in a week what I have been working on for a couple years” (with Sanger sequencing), and the results were concordant. “Long story short, I was a happy customer.”

Read More »

Friday, February 26, 2021

Getting the most out of your PacBio libraries with size selection.

PacBio RS II sequencing chemistries provide read lengths beyond 20 kb with high consensus accuracy. The long read lengths of P4-C2 chemistry and demonstrated consensus accuracy of 99.999% are ideal for applications such as de novo assembly, targeted sequencing and isoform sequencing. The recently launched P5-C3 chemistry generates even longer reads with N50 often >10,000 bp, making it the best choice for scaffolding and spanning structural rearrangements. With these chemistry advances, PacBio’s read length performance is now primarily determined by the SMRTbell library itself. Size selection of a high-quality, sheared 20 kb library using the BluePippin™ System has been demonstrated…

Read More »

Friday, February 26, 2021

Isoform sequencing: Unveiling the complex landscape of the eukaryotic transcriptome on the PacBio RS II.

Alternative splicing of RNA is an important mechanism that increases protein diversity and is pervasive in the most complex biological functions. While advances in RNA sequencing methods have accelerated our understanding of the transcriptome, isoform discovery remains computationally challenging due to short read lengths. Here, we describe the Isoform Sequencing (Iso-Seq) method using long reads generated by the PacBio RS II. We sequenced rat heart and lung RNA using the Clontech® SMARTer® cDNA preparation kit followed by size selection using agarose gel. Additionally, we tested the BluePippin™ device from Sage Science for efficiently extracting longer transcripts = 3 kb. Post-sequencing,…

Read More »

Friday, February 26, 2021

SMRT Sequencing solutions for large genomes and transcriptomes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers in large genome complexities, such as long, highly repetitive, low-complexity regions and duplication events, and differentiating between transcript isoforms that are difficult to resolve with short-read technologies. We present solutions available for both reference genome improvement (>100 MB) and transcriptome research to best leverage long reads that have exceeded 20 Kb in length. Benefits for these applications are further realized with consistent use of size-selection of input sample using the BluePippin™ device from Sage Science. Highlights from our genome assembly projects using the latest P5-C3 chemistry on model organisms…

Read More »

Friday, February 26, 2021

A comparison of assemblers and strategies for complex, large-genome sequencing with PacBio long reads.

PacBio sequencing holds promise for addressing large-genome complexities, such as long, highly repetitive, low-complexity regions and duplication events that are difficult to resolve with short-read technologies. Several strategies, with varying outcomes, are available for de novo sequencing and assembling of larger genomes. Using a diploid fungal genome, estimated to be ~80 Mb in size, as the basis dataset for comparison, we highlight assembly options when using only PacBio sequencing or a combined strategy leveraging data sets from multiple sequencing technologies. Data generated from SMRT Sequencing was subjected to assembly using different large-genome assemblers, and comparisons of the results will be…

Read More »

Friday, February 26, 2021

Long-read, single-molecule applications for protein engineering.

The long read lengths of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases of sequence. This feature is particularly useful in the context of protein engineering, where large numbers of similar constructs are generated routinely to explore the effects of mutations on function and stability. We have developed a PCR-based barcoded sequencing method to generate high quality, full-length sequence data for batches of constructs generated in a common backbone. Individual barcodes are coupled to primers targeting a common region of the vector of interest. The amplified products are pooled into a single DNA library, and sequencing data…

Read More »

Friday, February 26, 2021

Near perfect de novo assemblies of eukaryotic genomes using PacBio long read sequencing.

Third generation single molecule sequencing technology from Pacific Biosciences, Moleculo, Oxford Nanopore, and other companies are revolutionizing genomics by enabling the sequencing of long, individual molecules of DNA and RNA. One major advantage of these technologies over current short read sequencing is the ability to sequence much longer molecules, thousands or tens of thousands of nucleotides instead of mere hundreds. This capacity gives researchers substantially greater power to probe into microbial, plant, and animal genomes, but it remains unknown on how to best use these data. To answer this, we systematically evaluated the human genome and 25 other important genomes…

Read More »

Friday, February 26, 2021

Accurately surveying uncultured microbial species with SMRT Sequencing

Background: Microbial ecology is reshaping our understanding of the natural world by revealing the large phylogenetic and functional diversity of microbial life. However the vast majority of these microorganisms remain poorly understood, as most cultivated representatives belong to just four phylogenetic groups and more than half of all identified phyla remain uncultivated. Characterization of this microbial ‘dark matter’ will thus greatly benefit from new metagenomic methods for in situ analysis. For example, sensitive high throughput methods for the characterization of community composition and structure from the sequencing of conserved marker genes. Methods: Here we utilize Single Molecule Real-Time (SMRT) sequencing…

Read More »

Friday, February 26, 2021

SMRT Sequencing solutions for investigative studies to understand evolutionary processes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers to understand molecular mechanisms in evolution and gain insight into adaptive strategies. With read lengths exceeding 10 kb, we are able to sequence high-quality, closed microbial genomes with associated plasmids, and investigate large genome complexities, such as long, highly repetitive, low-complexity regions and multiple tandem-duplication events. Improved genome quality, observed at 99.9999% (QV60) consensus accuracy, and significant reduction of gap regions in reference genomes (up to and beyond 50%) allow researchers to better understand coding sequences with high confidence, investigate potential regulatory mechanisms in noncoding regions, and make inferences…

Read More »

Friday, February 26, 2021

SMRT Sequencing solutions for plant genomes and transcriptomes

Single Molecule, Real-Time (SMRT) Sequencing provides efficient, streamlined solutions to address new frontiers in plant genomes and transcriptomes. Inherent challenges presented by highly repetitive, low-complexity regions and duplication events are directly addressed with multi- kilobase read lengths exceeding 8.5 kb on average, with many exceeding 20 kb. Differentiating between transcript isoforms that are difficult to resolve with short-read technologies is also now possible. We present solutions available for both reference genome and transcriptome research that best leverage long reads in several plant projects including algae, Arabidopsis, rice, and spinach using only the PacBio platform. Benefits for these applications are further…

Read More »

Friday, February 26, 2021

Data release for polymorphic genome assembly algorithm development.

Heterozygous and highly polymorphic diploid (2n) and higher polyploidy (n > 2) genomes have proven to be very difficult to assemble. One key to the successful assembly and phasing of polymorphic genomics is the very long read length (9-40 kb) provided by the PacBio RS II system. We recently released software and methods that facilitate the assembly and phasing of genomes with ploidy levels equal to or greater than 2n. In an effort to collaborate and spur on algorithm development for assembly and phasing of heterozygous polymorphic genomes, we have recently released sequencing datasets that can be used to test…

Read More »

Friday, February 26, 2021

The use of PacBio and Hi-C data in de novo assembly of the goat genome.

Generating de novo reference genome assemblies for non-model organisms is a laborious task that often requires a large amount of data from several sequencing platforms and cytogenetic surveys. By using PacBio sequence data and new library creation techniques, we present a de novo, high quality reference assembly for the goat (Capra hircus) that demonstrates a primarily sequencing-based approach to efficiently create new reference assemblies for Eukaryotic species. This goat reference genome was created using 38 million PacBio P5-C3 reads generated from a San Clemente goat using the Celera Assembler PBcR pipeline with PacBio read self-correction. In order to generate the…

Read More »

1 2 3 198

Subscribe for blog updates:

Archives