X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
August 1, 2019

Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment.

High-throughput studies of microbial communities suggest that Archaea are a widespread component of microbial diversity in various ecosystems. However, proper quantification of archaeal diversity and community ecology remains limited, as sequence coverage of Archaea is usually low owing to the inability of available prokaryotic primers to efficiently amplify archaeal compared to bacterial rRNA genes. To improve identification and quantification of Archaea, we designed and validated the utility of several primer pairs to efficiently amplify archaeal 16S rRNA genes based on up-to-date reference genes. We demonstrate that several of these primer pairs amplify phylogenetically diverse Archaea with high sequencing coverage, outperforming…

Read More »

August 1, 2019

Population Genome Sequencing of the Scab Fungal Species Venturia inaequalis, Venturia pirina, Venturia aucupariae and Venturia asperata.

The Venturia genus comprises fungal species that are pathogens on Rosaceae host plants, including V. inaequalis and V. asperata on apple, V. aucupariae on sorbus and V. pirina on pear. Although the genetic structure of V. inaequalis populations has been investigated in detail, genomic features underlying these subdivisions remain poorly understood. Here, we report whole genome sequencing of 87 Venturia strains that represent each species and each population within V. inaequalis We present a PacBio genome assembly for the V. inaequalis EU-B04 reference isolate. The size of selected genomes was determined by flow cytometry, and varied from 45 to 93…

Read More »

August 1, 2019

A comparison of immunoglobulin IGHV, IGHD and IGHJ genes in wild-derived and classical inbred mouse strains.

The genomes of classical inbred mouse strains include genes derived from all three major subspecies of the house mouse, Mus musculus. We recently posited that genetic diversity in the immunoglobulin heavy chain (IGH) gene loci of C57BL/6 and BALB/c mice reflect differences in subspecies origin. To investigate this hypothesis, we conducted high-throughput sequencing of IGH gene rearrangements to document IGH variable (IGHV), joining (IGHJ), and diversity (IGHD) genes in four inbred wild-derived mouse strains (CAST/EiJ, LEWES/EiJ, MSM/MsJ, and PWD/PhJ), and a single disease model strain (NOD/ShiLtJ), collectively representing genetic backgrounds of several major mouse subspecies. A total of 341 germline…

Read More »

August 1, 2019

Haplotype-Resolved Cattle Genomes Provide Insights Into Structural Variation and Adaptation

We present high quality, phased genome assemblies representative of taurine and indicine cattle, subspecies that differ markedly in productivity-related traits and environmental adaptation. We report a new haplotype-aware scaffolding and polishing pipeline using contigs generated by the trio binning method to produce haplotype-resolved, chromosome-level genome assemblies of Angus (taurine) and Brahman (indicine) cattle breeds. These assemblies were used to identify structural and copy number variants that differentiate the subspecies and we found variant detection was sensitive to the specific reference genome chosen. Six gene families with immune related functions are expanded in the indicine lineage. Assembly of the genomes of…

Read More »

August 1, 2019

A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana.

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with…

Read More »

August 1, 2019

Chromosome-level hybrid de novo genome assemblies as an attainable option for non-model organisms

The emergence of third generation sequencing (3GS; long-reads) is making closer the goal of chromosome-size fragments in de novo genome assemblies. This allows the exploration of new and broader questions on genome evolution for a number of non-model organisms. However, long-read technologies result in higher sequencing error rates and therefore impose an elevated cost of sufficient coverage to achieve high enough quality. In this context, hybrid assemblies, combining short-reads and long-reads provide an alternative efficient and cost-effective approach to generate de novo, chromosome-level genome assemblies. The array of available software programs for hybrid genome assembly, sequence correction and manipulation is…

Read More »

August 1, 2019

Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation.

We describe a method that adds long-read sequencing to a mix of technologies used to assemble a highly complex cattle rumen microbial community, and provide a comparison to short read-based methods. Long-read alignments and Hi-C linkage between contigs support the identification of 188 novel virus-host associations and the determination of phage life cycle states in the rumen microbial community. The long-read assembly also identifies 94 antimicrobial resistance genes, compared to only seven alleles in the short-read assembly. We demonstrate novel techniques that work synergistically to improve characterization of biological features in a highly complex rumen microbial community.

Read More »

August 1, 2019

De novo assembly of a wild pear (Pyrus betuleafolia) genome.

China is the origin and evolutionary centre of Oriental pears. Pyrus betuleafolia is a wild species native to China and distributed in the northern region, and it is widely used as rootstock. Here, we report the de novo assembly of the genome of P. betuleafolia-Shanxi Duli using an integrated strategy that combines PacBio sequencing, BioNano mapping and chromosome conformation capture (Hi-C) sequencing. The genome assembly size was 532.7 Mb, with a contig N50 of 1.57 Mb. A total of 59 552 protein-coding genes and 247.4 Mb of repetitive sequences were annotated for this genome. The expansion genes in P. betuleafolia were significantly enriched in secondary metabolism,…

Read More »

August 1, 2019

Dynamic Changes in Metabolite Accumulation and the Transcriptome during Leaf Growth and Development in Eucommia ulmoides.

Eucommia ulmoides Oliver is widely distributed in China. This species has been used mainly in medicine due to the high concentration of chlorogenic acid (CGA), flavonoids, lignans, and other compounds in the leaves and barks. However, the categories of metabolites, dynamic changes in metabolite accumulation and overall molecular mechanisms involved in metabolite biosynthesis during E. ulmoides leaf growth and development remain unknown. Here, a total of 515 analytes, including 127 flavonoids, 46 organic acids, 44 amino acid derivatives, 9 phenolamides, and 16 vitamins, were identified from four E. ulmoides samples using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) (for widely targeted metabolites).…

Read More »

August 1, 2019

Identification and characterization of chicken circovirus from commercial broiler chickens in China.

Circoviruses are found in many species, including mammals, birds, lower vertebrates and invertebrates. To date, there are no reports of circovirus-induced diseases in chickens. In this study, we identified a new strain of chicken circovirus (CCV) by PacBio third-generation sequencing samples from chickens with acute gastroenteritis in a Shandong commercial broiler farm in China. The complete genome of CCV was verified by inverse PCR. Genomic analysis revealed that CCV codes two inverse open reading frames (ORFs), and a potential stem-loop structure was present at the 5' end with a structure typical of a circular virus. Phylogenetic tree analysis showed that…

Read More »

August 1, 2019

Arcobacter cryaerophilus Isolated From New Zealand Mussels Harbor a Putative Virulence Plasmid.

A wide range of Arcobacter species have been described from shellfish in various countries but their presence has not been investigated in Australasia, in which shellfish are a popular delicacy. Since several arcobacters are considered to be emerging pathogens, we undertook a small study to evaluate their presence in several different shellfish, including greenshell mussels, oysters, and abalone (paua) in New Zealand. Arcobacter cryaerophilus, a species associated with human gastroenteritis, was the only species isolated, from greenshell mussels. Whole-genome sequencing revealed a range of genomic traits in these strains that were known or associated virulence factors. Furthermore, we describe the…

Read More »

August 1, 2019

Dynamic virulence-related regions of the plant pathogenic fungus Verticillium dahliae display enhanced sequence conservation.

Plant pathogens continuously evolve to evade host immune responses. During host colonization, many fungal pathogens secrete effectors to perturb such responses, but these in turn may become recognized by host immune receptors. To facilitate the evolution of effector repertoires, such as the elimination of recognized effectors, effector genes often reside in genomic regions that display increased plasticity, a phenomenon that is captured in the two-speed genome hypothesis. The genome of the vascular wilt fungus Verticillium dahliae displays regions with extensive presence/absence polymorphisms, so-called lineage-specific regions, that are enriched in in planta-induced putative effector genes. As expected, comparative genomics reveals differential…

Read More »

August 1, 2019

Musa balbisiana genome reveals subgenome evolution and functional divergence.

Banana cultivars (Musa ssp.) are diploid, triploid and tetraploid hybrids derived from Musa acuminata and Musa balbisiana. We presented a high-quality draft genome assembly of M. balbisiana with 430?Mb (87%) assembled into 11?chromosomes. We identified that the recent divergence of M. acuminata (A-genome) and M. balbisiana (B-genome) occurred after lineage-specific whole-genome duplication, and that the B-genome may be more sensitive to the fractionation process compared to the A-genome. Homoeologous exchanges occurred frequently between A- and B-subgenomes in allopolyploids. Genomic variation within progenitors resulted in functional divergence of subgenomes. Global homoeologue expression dominance occurred between subgenomes of the allotriploid. Gene families…

Read More »

August 1, 2019

Large Fragment Deletions Induced by Cas9 Cleavage While Not in BEs System in Rabbit

CRISPR-Cas9 and BEs system are poised to become the gene editing tool of choice in clinical contexts, however large fragment deletion was found in Cas9-mediated mutation cells without animal level validation. By analyzing 16 gene-edited rabbit lines (including 112 rabbits) generated using SpCas9, BEs, xCas9 and xCas9-BEs with long-range PCR genotyping and long-read sequencing by PacBio platform, we show that extending thousands of bases fragment deletions in single-guide RNA/Cas9 and xCas9 system mutation rabbit, but few large deletions were found in BEs-induced mutation rabbits. We firstly validated that no large fragment deletion induced by BEs system at animal level, suggesting…

Read More »

August 1, 2019

Decoding dragon DNA.

Monitor lizards (genus Varanus) have a number of characteristics that differentiate them from other squamates (snakes and lizards), including their unique cardiovascular systems and metabolism. Now, a paper in Nature Ecology and Evolution reports the genome sequence of the largest extant varanid — the Komodo dragon (Varanus komodoensis) — and describes genomic features that may underlie its distinct physiology.

Read More »

1 2 3 4 185

Subscribe for blog updates:

Archives