To bring personalized medicine to all patients, cancer researchers need more reliable and comprehensive views of somatic variants of all sizes that drive cancer biology.
With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System, you can easily and cost effectively generate highly accurate long reads (HiFi reads, >99% single-molecule accuracy) from genes or regions of interest ranging in size from several hundred base pairs to 20 kb. Target all types of variation across relevant genomic regions, including low complexity regions like repeat expansions, promoters, and flanking regions of transposable elements.
Discover the benefits of HiFi reads and learn how highly accurate long-read sequencing provides a single technology solution across a range of applications.
Learn why it is critically important to understand accuracy in DNA sequencing to distinguish important biological information from sequencing errors.
Learn how Single Molecule, Real-Time (SMRT) Sequencing and the Sequel IIe System and will accelerate your research by delivering highly accurate long reads to provide the most comprehensive view of genomes, transcriptomes and epigenomes.
In this webinar, the presenters describe a targeted sequencing workflow that combines Roche NimbleGen’s SeqCap EZ enrichment technology with PacBio’ SMRT Sequencing to provide a more comprehensive view of variants and haplotype information over multi-kilobase, contiguous regions. They demonstrate that 6 kb fragments can also be utilized to enrich for long fragments that extend beyond the targeted capture site and well into (and often across) the adjacent intronic regions. When combined with SMRT Sequencing, multi-kilobase genomic regions can be phased and variants, including complex structural variants, can be detected in exons, introns and intergenic regions.
In this video, PacBio scientists present ongoing improvements to the Integrative Genomics Viewer (IGV) and demonstrate how multiple new features improve visualization support for PacBio long-read sequencing data. The video describes these recent updates which include; quick consensus accuracy mode to hide random single-molecule errors, direct phasing of haplotypes using long-read evidence, and visual annotation of insertions and deletions relative to the reference with enumeration of gap size for individual reads. These new features are available now in the development version of IGV, which can be found at http://software.broadinstitute.org/software/igv/download_snapshot. The Sequel sequencing data used in this demonstration is also publicly…
PacBio bioinformatician Aaron Wenger presents this ASHG 2016 poster demonstrating human structural variation detection at varying coverage levels with SMRT Sequencing on the Sequel System. Results were compared to truth sets for well-characterized genomes. Results indicate that even low coverage of SMRT Sequencing makes it possible to detect hundreds of SVs that are missed in high-coverage short-read sequencing data.
At PAG 2017, Rockefeller University’s Erich Jarvis offered an in-depth comparison of methods for generating highly contiguous genome assemblies, using hummingbird as the basis to evaluate a number of sequencing and scaffolding technologies. Analyses include gene content, error rate, chromosome metrics, and more. Plus: a long-read look at four genes associated with vocal learning.
This tutorial provides an overview of the Long Amplicon Analysis (LAA) application. The LAA algorithm generates highly accurate, phased and full-length consensus sequences from long amplicons. Applications of LAA include HLA typing, alternative haplotyping, and localized de novo assemblies of targeted genes. This tutorial covers features of SMRT Link v5.0.0.
Euan Ashley from Stanford University started with the premise that while current efforts in the field of genomics medicine address 30% of patient cases, there’s a need for new approaches to make sense of the remaining 70%. Toward that end, he said that accurately calling structural variants is a major need. In one translational research example, Ashley said that SMRT Sequencing with the Sequel System allowed his team to identify six potentially causative genes in an individual with complex and varied symptoms; one gene was associated with Carney syndrome, which was a match for the person’s physiology and was later…
Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.
Michael Lutz, from the Duke University Medical Center, discussed a recently published software tool that can now be used in a pipeline with SMRT Sequencing data to find structural variant biomarkers for neurodegenerative diseases with a focus on Alzheimer’s disease, ALS, and Lewy body dementia. His team is particularly interested in short sequence repeats and short tandem repeats, which have already been implicated in neurodegenerative disease.
At AGBT 2017, Mike Schatz from Johns Hopkins University and Cold Spring Harbor Laboratory presented data from sequencing, assembling, and analyzing personalized, phased diploid genomes with either Illumina, 10x Genomics, and PacBio SMRT Sequencing. Compared to the short-read-based methods, PacBio data assembled in large, complete contigs and contained the broadest range of structural variants with the best resolution. Plus: unexpected translocation findings with SMRT Sequencing, validated in follow-up studies.
SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.