Menu
July 7, 2019  |  

Identification of a Pseudomonas aeruginosa PAO1 DNA methyltransferase, its targets, and physiological roles.

DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N(6)-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in the PAO1 methylation status were dependent on growth conditions and affected P. aeruginosa pathogenicity in a Galleria mellonella infection model. Furthermore, we found that methylated motifs in promoter regions led to shifts in sense and antisense gene expression, emphasizing the role of enzymatic DNA methylation as an epigenetic control of phenotypic traits in P. aeruginosa Since the DNA methylation enzymes are not encoded in the core genome, our findings illustrate how the acquisition of accessory genes can shape the global P. aeruginosa transcriptome and thus may facilitate adaptation to new and challenging habitats.IMPORTANCE With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria. Copyright © 2017 Doberenz et al.


July 7, 2019  |  

Complete genome sequence of a versatile hydrocarbon degrader, Pseudomonas aeruginosa DN1 isolated from petroleum-contaminated soil.

Pseudomonas aeruginosa DN1 was isolated from a petroleum-contaminated soil from Changqing Oilfield with its capability to degrade high molecular weight polycyclic aromatic hydrocarbons (HMW PAHs) and crude oil. Herein, the whole genome sequence analysis of P. aeruginosa strain DN1 was reported, consisting of a size of 6,641,902 bp chromosome assembled genome (67.09 mol% G + C content) and a 317,349 bp plasmid assembled genome (57.01 mol% G + C content). According to the genome information, strain DN1 encodes various genes related to degradation of aliphatic hydrocarbons and aromatic compounds. In addition, DN1 contains gene clusters for biosynthesis and regulation of biosurfactant rhamnolipids. These genes may serve as a basis of further elucidation of the genetic background of this promising strain, and provide insights into investigating the metabolic and regulatory mechanisms of hydrocarbon biodegradation.


July 7, 2019  |  

Complete genome of a panresistant Pseudomonas aeruginosa strain, isolated from a patient with respiratory failure in a Canadian community hospital.

We report here the complete genome sequence of a panresistant Pseudomonas aeruginosa strain, isolated from a patient with respiratory failure in Canada. No carbapenemase genes were identified. Carbapenem resistance is attributable to a frameshift in the oprD gene; the basis for colistin resistance remains undetermined. Copyright © 2017 Xiong et al.


July 7, 2019  |  

Genetic and biochemical characterization of HMB-1, a novel subclass B1 metallo-ß-lactamase found in a Pseudomonas aeruginosa clinical isolate.

To characterize a novel subclass B1 metallo-ß-lactamase (MBL) found in an MDR Pseudomonas aeruginosa clinical isolate.The isolate P. aeruginosa NRZ-03096 was recovered in 2012 from an anal swab from a patient hospitalized in Northern Germany and showed high MICs of carbapenems. MBL production was analysed by several phenotypic tests. Genetic characterization of the novel bla gene and MLST was performed by WGS. The novel bla gene was expressed in Escherichia coli TOP10 and the enzyme was subjected to biochemical characterization to determine the kinetic parameters K m and k cat .P. aeruginosa NRZ-03096 was resistant to all tested ß-lactams and showed an MBL phenotype. Shotgun cloning experiments yielded a clone producing a novel subclass B1 enzyme with only 74.3% identity to the next nearest relative, KHM-1. The novel MBL was named HMB-1 (for Hamburg MBL). Analysis of WGS data showed that the bla HMB-1 gene was chromosomally located as part of a Tn 3 family transposon that was named Tn 6345 . Expression of bla HMB-1 in E. coli TOP10 led to increased resistance to ß-lactams. Determination of K m and k cat revealed that HMB-1 had different hydrolytic characteristics compared with KHM-1, with lower hydrolytic rates for cephalosporins and a higher rate for imipenem.The identification of HMB-1 further underlines the ongoing spread and diversification of carbapenemases in Gram-negative human pathogens and especially in P. aeruginosa .


July 7, 2019  |  

Rapid and consistent evolution of colistin resistance in XDR Pseudomonas aeruginosa during morbidostat culture.

Colistin is a last resort antibiotic commonly used against multidrug-resistant strains of Pseudomonas aeruginosa To investigate the potential for in-situ evolution of resistance against colistin and to map the molecular targets of colistin resistance, we exposed two P. aeruginosa isolates to colistin using a continuous culture device known as morbidostat. As a result, colistin resistance reproducibly increased 10-fold within ten days, and 100-fold within 20 days, along with highly stereotypic, yet strain specific mutation patterns. The majority of mutations hit the pmrAB two component signaling system and genes involved in lipopolysaccharide (LPS) synthesis, including lpxC, pmrE, and migA We tracked the frequencies of all arising mutations by whole genome deep sequencing every 3-4 days to provide a detailed picture of the dynamics of resistance evolution, including competition and displacement among multiple resistant sub-populations. In seven out of 18 cultures, we observed mutations in mutS along with a mutator phenotype that seemed to facilitate resistance evolution. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence.

Increasing antibiotic resistance warrants therapeutic alternatives. Here we investigated the efficacy of bacteriophage-therapy (phage) alone or combined with antibiotics against experimental endocarditis (EE) due to Pseudomonas aeruginosa, an archetype of difficult-to-treat infection.In vitro fibrin clots and rats with aortic EE were treated with an antipseudomonas phage cocktail alone or combined with ciprofloxacin. Phage pharmacology, therapeutic efficacy, and resistance were determined.In vitro, single-dose phage therapy killed 7 log colony-forming units (CFUs)/g of fibrin clots in 6 hours. Phage-resistant mutants regrew after 24 hours but were prevented by combination with ciprofloxacin (2.5 × minimum inhibitory concentration). In vivo, single-dose phage therapy killed 2.5 log CFUs/g of vegetations in 6 hours (P < .001 vs untreated controls) and was comparable with ciprofloxacin monotherapy. Moreover, phage/ciprofloxacin combinations were highly synergistic, killing >6 log CFUs/g of vegetations in 6 hours and successfully treating 64% (n = 7/11) of rats. Phage-resistant mutants emerged in vitro but not in vivo, most likely because resistant mutations affected bacterial surface determinants important for infectivity (eg, the pilT and galU genes involved in pilus motility and LPS formation).Single-dose phage therapy was active against P. aeruginosa EE and highly synergistic with ciprofloxacin. Phage-resistant mutants had impaired infectivity. Phage-therapy alone or combined with antibiotics merits further clinical consideration.


July 7, 2019  |  

Complete genome sequences of two Pseudomonas aeruginosa strains isolated from children with bacteremia.

Two Pseudomonas aeruginosa strains isolated from children with bacteremia in Mexico City were sequenced using PacBio RS-II single-molecule real-time (SMRT) technology. The strains consist of a 7.0- to 7.4-Mb chromosome, with a high content of mobile elements, and variation in the genetic content of class 1 integron In1409. Copyright © 2017 Espinosa-Camacho et al.


July 7, 2019  |  

Complete genome sequences of four extensively drug-resistant Pseudomonas aeruginosa strains, isolated from adults with ventilator-associated pneumonia at a tertiary referral hospital in Mexico City.

Four extensively drug-resistant Pseudomonas aeruginosa strains, isolated from patients with pneumonia, were sequenced using PacBio RS-II single-molecule real-time (SMRT) technology. Genome sequence analysis identified great variability among mobile genetic elements, as well as some previously undescribed genomic islands and new variants of class 1 integrons (In1402, In1403, In1404, and In1408). Copyright © 2017 Espinosa-Camacho et al.


July 7, 2019  |  

Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network.

Bacteria of many species rely on a simple molecule, the intracellular secondary messenger c-di-GMP (Bis-(3′-5′)-cyclic dimeric guanosine monophosphate), to make a vital choice: whether to stay in one place and form a biofilm, or to leave it in search of better conditions. The c-di-GMP network has a bow-tie shaped architecture that integrates many signals from the outside world-the input stimuli-into intracellular c-di-GMP levels that then regulate genes for biofilm formation or for swarming motility-the output phenotypes. How does the ‘uninformed’ process of evolution produce a network with the right input/output association and enable bacteria to make the right choice? Inspired by new data from 28 clinical isolates of Pseudomonas aeruginosa and strains evolved in laboratory experiments we propose a mathematical model where the c-di-GMP network is analogous to a machine learning classifier. The analogy immediately suggests a mechanism for learning through evolution: adaptation though incremental changes in c-di-GMP network proteins acquires knowledge from past experiences and enables bacteria to use it to direct future behaviors. Our model clarifies the elusive function of the ubiquitous c-di-GMP network, a key regulator of bacterial social traits associated with virulence. More broadly, the link between evolution and machine learning can help explain how natural selection across fluctuating environments produces networks that enable living organisms to make sophisticated decisions.


July 7, 2019  |  

Pseudomonas aeruginosa clinical isolates in Nepal coproducing metallo-ß-lactamases and 16S rRNA methyltransferases.

A total of 11 multidrug-resistant Pseudomonas aeruginosa clinical isolates were obtained in Nepal. Four of these isolates harbored genes encoding one or more carbapenemases (DIM-1, NDM-1, and/or VIM-2), and five harbored genes encoding a 16S rRNA methyltransferase (RmtB4 or RmtF2). A novel RmtF variant, RmtF2, had a substitution (K65E) compared with the same gene in RmtF. To our knowledge, this is the first report describing carbapenemase- and 16S rRNA methyltransferase-coproducing P. aeruginosa clinical isolates in Nepal. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

The rapid in vivo evolution of Pseudomonas aeruginosa in ventilator-associated pneumonia patients leads to attenuated virulence.

Pseudomonas aeruginosa is an opportunistic pathogen that causes severe airway infections in humans. These infections are usually difficult to treat and associated with high mortality rates. While colonizing the human airways, P. aeruginosa could accumulate genetic mutations that often lead to its better adaptability to the host environment. Understanding these evolutionary traits may provide important clues for the development of effective therapies to treat P. aeruginosa infections. In this study, 25 P. aeruginosa isolates were longitudinally sampled from the airways of four ventilator-associated pneumonia (VAP) patients. Pacbio and Illumina sequencing were used to analyse the in vivo evolutionary trajectories of these isolates. Our analysis showed that positive selection dominantly shaped P. aeruginosa genomes during VAP infections and led to three convergent evolution events, including loss-of-function mutations of lasR and mpl, and a pyoverdine-deficient phenotype. Specifically, lasR encodes one of the major transcriptional regulators in quorum sensing, whereas mpl encodes an enzyme responsible for recycling cell wall peptidoglycan. We also found that P. aeruginosa isolated at late stages of VAP infections produce less elastase and are less virulent in vivo than their earlier isolated counterparts, suggesting the short-term in vivo evolution of P. aeruginosa leads to attenuated virulence.© 2017 The Authors.


July 7, 2019  |  

Complete and draft genome sequences of eight oceanic Pseudomonas aeruginosa strains.

Pseudomonas aeruginosa is one of the most common model bacterial species, and genomes of hundreds of strains of this species have been sequenced to date. However, currently there is only one available genome of an oceanic isolate. Here, we report two complete and six draft genome sequences of P. aeruginosa isolates from the open ocean. Copyright © 2017 Kumagai et al.


July 7, 2019  |  

Genome sequence of highly virulent Pseudomonas aeruginosa strain VA-134, isolated from a burn patient.

Infection with Pseudomonas aeruginosa leads to impairment of healing and many deaths in severe burn patients. The phenotypic diversity of P. aeruginosa strains makes it difficult to define a therapeutic strategy. Here we report the genome sequence of a highly virulent strain of P. aeruginosa, VA-134, isolated from a burn patient. Copyright © 2016 Miller et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.