Menu
July 7, 2019

Whole-genome sequences of bacteremia isolates of Bordetella holmesii.

Bordetella holmesii causes respiratory and invasive diseases in humans, but its pathogenesis remains poorly understood. We report here the genome sequences of seven bacteremia isolates of B. holmesii, including the type strain. Comparative analysis of these sequences may aid studies of B. holmesii biology and assist in the development of species-specific diagnostic strategies. Copyright © 2017 Tettelin et al.


July 7, 2019

The biofilm inhibitor carolacton enters Gram-negative cells: studies using a TolC-deficient strain of Escherichia coli.

The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of E. coli TolC at similar concentrations as for streptococci. This inhibition is completely lost for a C-9 (R) epimer of carolacton, a derivative with an inverted stereocenter at carbon atom 9 [(S) ? (R)] as the sole difference from the native molecule, which is also inactive in S. pneumoniae and S. mutans, suggesting a specific interaction of native carolacton with a conserved cellular target present in bacterial phyla as distantly related as Firmicutes and Proteobacteria. The efflux pump inhibitor (EPI) phenylalanine arginine ß-naphthylamide (PAßN), which specifically inhibits AcrAB-TolC, renders E. coli susceptible to carolacton. Our data indicate that carolacton has potential for use in antimicrobial chemotherapy against Gram-negative bacteria, as a single drug or in combination with EPIs. Strain E. coli TolC has been deposited at the DSMZ; together with the associated RNA-seq data and MIC values, it can be used as a reference during future screenings for novel bioactive compounds. IMPORTANCE The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost importance. The myxobacterial secondary metabolite carolacton had previously been shown to inhibit biofilm formation and growth of streptococci. Here, we investigated if carolacton could act against Gram-negative bacteria, which are difficult targets because of their double-layered cytoplasmic envelope. We found that the model organism Escherichia coli is susceptible to carolacton, similar to the Gram-positive Streptococcus pneumoniae, if its multidrug efflux system AcrAB-TolC is either inactivated genetically, by disruption of the tolC gene, or physiologically by coadministering an efflux pump inhibitor. A carolacton epimer that has a different steric configuration at carbon atom 9 is completely inactive, suggesting that carolacton may interact with the same molecular target in both Gram-positive and Gram-negative bacteria.


July 7, 2019

First detailed genetic characterization of the structural organization of type III arginine catabolic mobile elements harbored by Staphylococcus epidermidis by using whole-genome sequencing.

The type III arginine catabolic mobile element (ACME) was detected in three Staphylococcus epidermidis oral isolates recovered from separate patients (one healthy, one healthy with dental implants, and one with periodontal disease) based on ACME-arc-operon- and ACME-opp3-operon-directed PCR. These isolates were subjected to whole-genome sequencing to characterize the precise structural organization of ACME III for the first time, which also revealed that all three isolates were the same sequence type, ST329. Copyright © 2017 McManus et al.


July 7, 2019

Evolution of sphingomonad gene clusters related to pesticide catabolism revealed by genome sequence and mobilomics of Sphingobium herbicidovorans MH.

Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019

Complete genome sequence of the sulfur-oxidizing chemolithoautotrophic Sulfurovum lithotrophicum 42BKT(T).

A sulfur-oxidizing chemolithoautotrophic bacterium, Sulfurovum lithotrophicum 42BKT(T), isolated from hydrothermal sediments in Okinawa, Japan, has been used industrially for CO2 bio-mitigation owing to its ability to convert CO2 into C5H8NO4(-) at a high rate of specific mitigation (0.42 g CO2/cell/h). The genome of S. lithotrophicum 42BKT(T) comprised of a single chromosome of 2217,891 bp with 2217 genes, including 2146 protein-coding genes and 54 RNA genes. Here, we present its complete genome-sequence information, including information about the genes encoding enzymes involved in CO2 fixation and sulfur oxidation.


July 7, 2019

SureMap: Versatile, error tolerant, and high sensitive read mapper

SureMap is a versatile, error tolerant and high sensitive read mapper which is able to map “difficult” reads, those requiring many edit operations to be mapped to the reference genome, with acceptable time complexity. Mapping real datasets reveal that many variants unidentifiable by other mappers can be called using Suremap. Moreover, SureMap has a very good running time and accuracy in aligning very long and noisy reads like PacBio and Nanopore against a reference genome.


July 7, 2019

Echinobase: an expanding resource for echinoderm genomic information

Echinobase, a web accessible information system of diverse genomics and biological data for the echinoderm clade, grew out of SpBase, the first echinoderm genome project for sea urchin, Strongylocentrotus purpuratus. Sea urchins and their relatives are utilitarian research models in fields ranging from marine biology to developmental biology and gene regulatory systems. Echinobase is a user-friendly web interface that links an array of biological data that would otherwise have been tedious and frustrating for researchers to extract and organize. The system hosts a powerful gene search engine, genomics browser and other bioinformatics tools to investigate genomics and high throughput data. The Echinobase information system now serves genomic information for eight echinoderm species: S. purpuratus, Strongylocentrotus fransciscanus, Allocentrotus fragilis, Lytechinus variegatus, Patiria miniata, Parastichopus parvimensis and Ophiothrix spiculata, Eucidaris tribuloides. Herein lies a description of the web information system, genomics data types and content hosted by Echinobase.org. The goal of Echinobase is to connect genomic information to various experimental data and accelerate the research in field of molecular biology, developmental process, gene regulatory networks and more recently engineering biological systems0.


July 7, 2019

Complete genome sequence of a strain of Bifidobacterium pseudolongum isolated from mouse feces and associated with improved organ transplant outcome.

Here, we report the complete genome sequence of Bifidobacterium pseudolongum strain UMB-MBP-01, isolated from the feces of C57BL/6J mice. This strain was identified in microbiome profiling studies and associated with improved transplant outcome in a murine model of cardiac heterotypic transplantation. Copyright © 2017 Mongodin et al.


July 7, 2019

Complete genome sequence of Salmonella enterica subsp. enterica serovar Paratyphi B sequence type 28 harboring mcr-1.

In 2015, plasmid-mediated colistin resistance was reported to be caused by a mobilized phosphoethanolamine transferase gene (mcr-1) in Enterobacteriaceae Here, we announce the complete genome sequence of the earliest d-tartrate-fermenting Salmonella enterica subsp. enterica serovar Paratyphi B isolate harboring mcr-1 from the collection of the German National Reference Laboratory for Salmonella. Copyright © 2017 Borowiak et al.


July 7, 2019

A modified multilocus sequence typing protocol to genotype Kingella kingae from oropharyngeal swabs without bacterial isolation.

Outbreaks of Kingella kingae infection are an emerging public health concern among daycare attendees carrying epidemic clones in the oropharynx. However, genotyping of such epidemic clones from affected cases is limited by the low performance of current methods to detect K. kingae from blood samples and lack of specimens available from infected sites. We aimed at developing a modified multilocus sequence typing (MLST) method to genotype K. kingae strains from oropharyngeal samples without prior culture. We designed in silico MLST primers specific for K. kingae by aligning whole nucleotide sequences of abcZ, adk, aroE, cpn60, recA, and gdh/zwf genes from closely related species belonging to the Kingella and Neisseria genera. We tested our modified MLST protocol on all Kingella species and N. meningitidis, as well as 11 oropharyngeal samples from young children with sporadic (n = 10) or epidemic (n = 1) K. kingae infection.We detected K. kingae-specific amplicons in the 11 oropharyngeal samples, corresponding to sequence-type 6 (ST-6) in 6 children including the epidemic cases, ST-25 in 2 children, and 3 possible novel STs (ST-67, ST-68, and ST-69). No amplicon was obtained from other Kingella species and N. meningitidis.We herein developed a specific MLST protocol that enables genotyping of K. kingae by MLST directly from oropharyngeal samples. This discriminatory tool, with which we identified the first K. kingae outbreak caused by ST-6 in Europe, may be used in further epidemiological investigations.


July 7, 2019

Genome sequence and composition of a tolyporphin-producing cyanobacterium-microbial community.

The cyanobacterial culture HT-58-2 was originally described as a strain of Tolypothrix nodosa with the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align with Brasilonema strains and not with Tolypothrix isolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated by Erythrobacteraceae, 97% of which are Porphyrobacter species. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophyll a, and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with domains for a glycosyltransferase, two cytochrome P450 enzymes, and a flavin adenine dinucleotide (FAD)-binding protein. The composition of the gene cluster suggests a possible role in tolyporphin biosynthesis. IMPORTANCE A worldwide search more than 25 years ago for cyanobacterial natural products with anticancer activity identified a culture (HT-58-2) from Micronesia that produces tolyporphins. Tolyporphins are tetrapyrroles, like chlorophylls, but have several profound structural differences that reside outside the bounds of known biosynthetic pathways. To begin probing the biosynthetic origin and biological function of tolyporphins, our research has focused on studying the cyanobacterial strain, about which almost nothing has been previously reported. We find that the HT-58-2 culture is composed of the cyanobacterium and a community of associated bacteria, complicating the question of which organisms make tolyporphins. Elucidation of the cyanobacterial genome revealed an intriguing gene cluster that contains tetrapyrrole biosynthesis genes and a collection of unknown genes, suggesting that the cluster may be responsible for tolyporphin production. Knowledge of the genome and the gene cluster sharply focuses research to identify related cyanobacterial producers of tolyporphins and delineate the tolyporphin biosynthetic pathway. Copyright © 2017 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.