Menu
July 7, 2019  |  

Genome sequences for Streptomyces spp. isolated from disease-suppressive soils and long-term ecological research sites.

We report here the high-quality genome sequences of three Streptomyces spp. isolated as part of a long-term study of microbial soil ecology. Streptomyces sp. strain GS93-23 was isolated from naturally disease-suppressive soil (DSS) in Grand Rapids, MN, and Streptomyces sp. strains S3-4 and 3211-3 were isolated from experimental plots in the Cedar Creek Ecosystem Science Reserve (CCESR). Copyright © 2017 Heinsch et al.


July 7, 2019  |  

Identification of a gene cluster for telomestatin biosynthesis and heterologous expression using a specific promoter in a clean host.

Telomestatin, a strong telomerase inhibitor with G-quadruplex stabilizing activity, is a potential therapeutic agent for treating cancers. Difficulties in isolating telomestatin from microbial cultures and in chemical synthesis are bottlenecks impeding the wider use. Therefore, improvement in telomestatin production and structural diversification are required for further utilization and application. Here, we discovered the gene cluster responsible for telomestatin biosynthesis, and achieved production of telomestatin by heterologous expression of this cluster in the engineered Streptomyces avermitilis SUKA strain. Utilization of an optimal promoter was essential for successful production. Gene disruption studies revealed that the tlsB, tlsC, and tlsO-T genes play key roles in telomestatin biosynthesis. Moreover, exchanging TlsC core peptide sequences resulted in the production of novel telomestatin derivatives. This study sheds light on the expansion of chemical diversity of natural peptide products for drug development.


July 7, 2019  |  

An L-threonine transaldolase is required for L-threo-ß-hydroxy-a-amino acid assembly during obafluorin biosynthesis.

ß-Lactone natural products occur infrequently in nature but possess a variety of potent and valuable biological activities. They are commonly derived from ß-hydroxy-a-amino acids, which are themselves valuable chiral building blocks for chemical synthesis and precursors to numerous important medicines. However, despite a number of excellent synthetic methods for their asymmetric synthesis, few effective enzymatic tools exist for their preparation. Here we report cloning of the biosynthetic gene cluster for the ß-lactone antibiotic obafluorin and delineate its biosynthetic pathway. We identify a nonribosomal peptide synthetase with an unusual domain architecture and an L-threonine:4-nitrophenylacetaldehyde transaldolase responsible for (2S,3R)-2-amino-3-hydroxy-4-(4-nitrophenyl)butanoate biosynthesis. Phylogenetic analysis sheds light on the evolutionary origin of this rare enzyme family and identifies further gene clusters encoding L-threonine transaldolases. We also present preliminary data suggesting that L-threonine transaldolases might be useful for the preparation of L-threo-ß-hydroxy-a-amino acids.


July 7, 2019  |  

Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants.

We report a new Streptomyces species named S. formicae that was isolated from the African fungus-growing plant-ant Tetraponera penzigi and show that it produces novel pentacyclic polyketides that are active against MRSA and VRE. The chemical scaffold of these compounds, which we have called the formicamycins, is similar to the fasamycins identified from the heterologous expression of clones isolated from environmental DNA, but has significant differences that allow the scaffold to be decorated with up to four halogen atoms. We report the structures and bioactivities of 16 new molecules and show, using CRISPR/Cas9 genome editing, that biosynthesis of these compounds is encoded by a single type 2 polyketide synthase biosynthetic gene cluster in the S. formicae genome. Our work has identified the first antibiotic from the Tetraponera system and highlights the benefits of exploring unusual ecological niches for new actinomycete strains and novel natural products.


July 7, 2019  |  

De novo whole-genome sequencing of the wood rot fungus Polyporus brumalis, which exhibits potential terpenoid metabolism.

Polyporus brumalis is able to synthesize several sesquiterpenes during fungal growth. Using a single-molecule real-time sequencing platform, we present the 53-Mb draft genome of P. brumalis, which contains 6,231 protein-coding genes. Gene annotation and isolation support genetic information, which can increase the understanding of sesquiterpene metabolism in P. brumalis. Copyright © 2017 Lee et al.


July 7, 2019  |  

Molecules to ecosystems: Actinomycete natural products in situ.

Actinomycetes, filamentous actinobacteria found in numerous ecosystems around the globe, produce a wide range of clinically useful natural products (NP). In natural environments, actinomycetes live in dynamic communities where environmental cues and ecological interactions likely influence NP biosynthesis. Our current understating of these cues, and the ecological roles of NP, is in its infancy. We postulate that understanding the ecological context in which actinomycete metabolites are made is fundamental to advancing the discovery of novel NP. In this review we explore the ecological relevance of actinomycetes and their secondary metabolites from varying ecosystems, and suggest that investigating the ecology of actinomycete interactions warrants particular attention with respect to metabolite discovery. Furthermore, we focus on the chemical ecology and in situ analysis of actinomycete NP and consider the implications for NP biosynthesis at ecosystem scales.


July 7, 2019  |  

Draft genome sequence of Streptomyces scabrisporus NF3, an endophyte isolated from Amphipterygium adstringens.

We report the draft genome sequence of Streptomyces scabrisporus NF3, an endophyte isolated from Amphipterygium adstringens in Chiapas, Mexico. This strain produces a new modified linaridin peptide. The genome harbors at least 50 gene clusters for synthases of polyketide and nonribosomal peptides, suggesting a prospective production of various secondary metabolites. Copyright © 2017 Vazquez-Hernandez et al.


July 7, 2019  |  

Characterization of the polymyxin D synthetase biosynthetic cluster and product profile of Paenibacillus polymyxa ATCC 10401.

The increasing prevalence of polymyxin-resistant bacteria has stimulated the search for improved polymyxin lipopeptides. Here we describe the sequence and product profile for polymyxin D nonribosomal peptide synthetase from Paenibacillus polymyxa ATCC 10401. The polymyxin D synthase gene cluster comprised five genes that encoded ABC transporters (pmxC and pmxD) and enzymes responsible for the biosynthesis of polymyxin D (pmxA, pmxB, and pmxE). Unlike polymyxins B and E, polymyxin D contains d-Ser at position 3 as opposed to l-a,?-diaminobutyric acid and has an l-Thr at position 7 rather than l-Leu. Module 3 of pmxE harbored an auxiliary epimerization domain that catalyzes the conversion of l-Ser to the d-form. Structural modeling suggested that the adenylation domains of module 3 in PmxE and modules 6 and 7 in PmxA could bind amino acids with larger side chains than their preferred substrate. Feeding individual amino acids into the culture media not only affected production of polymyxins D1 and D2 but also led to the incorporation of different amino acids at positions 3, 6, and 7 of polymyxin D. Interestingly, the unnatural polymyxin analogues did not show antibiotic activity against a panel of Gram-negative clinical isolates, while the natural polymyxins D1 and D2 exhibited excellent in vitro antibacterial activity and were efficacious against Klebsiella pneumoniae and Acinetobacter baumannii in a mouse blood infection model. The results demonstrate the excellent antibacterial activity of these unusual d-Ser(3) polymxyins and underscore the possibility of incorporating alternate amino acids at positions 3, 6, and 7 of polymyxin D via manipulation of the polymyxin nonribosomal biosynthetic machinery.


July 7, 2019  |  

Rifamorpholines A-E, potential antibiotics from locust-associated actinobacteria Amycolatopsis sp. Hca4.

Cultivation of locust associated rare actinobacteria, Amycolatopsis sp. HCa4, has provided five unusual macrolactams rifamorpholines A-E. Their structures were determined by interpretation of spectroscopic and crystallographic data. Rifamorpholines A-E possess an unprecedented 5/6/6/6 ring chromophore, representing a new subclass of rifamycin antibiotics. The biosynthetic pathway for compounds 1-5 involves a key 1,6-cyclization for the formation of the morpholine ring. Compounds 2 and 4 showed potent activities against methicillin-resistant Staphylococcus aureus (MRSA) with MICs of 4.0 and 8.0 µM, respectively.


July 7, 2019  |  

Complete genome sequence of Actinomadura parvosata Subsp. kistnae, a rich source of novel natural product (bio-)chemistry.

The soil dwelling actinomycete strain Actinomadura parvosata subsp. kistnae is the producer of the antiviral antibiotics kistamicin A and B. Genome sequencing and bioinformatic analysis revealed the presence of the kistamycin biosynthetic gene cluster responsible for the formation of these non-ribosomal peptides as well as an impressive number of yet uncharacterized biosynthetic pathways. This includes polyketide, ribosomal and non-ribosomal peptide and a large number of terpenoid biosynthetic loci encoding yet unknown natural products. The genomic data of this strain is thus a treasure trove for genome mining for novel functional metabolites and new biocatalysts.


July 7, 2019  |  

Paenibacillus ihbetae sp. nov., a cold-adapted antimicrobial producing bacterium isolated from high altitude Suraj Tal Lake in the Indian trans-Himalayas.

The assessment of bacterial diversity and bioprospection of the high-altitude lake Suraj Tal microorganisms for potent antimicrobial activities revealed the presence of two Gram-stain-variable, endospore-forming, rod-shaped, aerobic bacteria, namely IHBB 9852(T) and IHBB 9951. Phylogenetic analysis based on 16S rRNA gene sequence showed the affiliation of strains IHBB 9852(T) and IHBB 9951 within the genus Paenibacillus, exhibiting the highest sequence similarity to Paenibacillus lactis DSM 15596(T) (97.8% and 97.7%) and less than 95.9% similarity to other species of the genus Paenibacillus. DNA-DNA relatedness among strains IHBB 9852(T) and IHBB 9951 was 90.2%, and with P. lactis DSM 15596(T), was 52.7% and 52.4%, respectively. The novel strains contain anteiso-C15:0, iso-C15:0, C16:0 and iso-C16:0 as major fatty acids, and phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol were predominant polar lipids. The DNA G+C content for IHBB 9852T and IHBB 9951 was 52.1 and 52.2mol%. Based on the results of phenotypic and genomic characterisations, we concluded that strains IHBB 9852(T) and IHBB 9951 belong to a novel Paenibacillus species, for which the name Paenibacillus ihbetae sp. nov. is proposed. The type strain is IHBB 9852(T) (=MTCC 12459(T)=MCC 2795(T)=JCM 31131(T)=KACC 19072(T); DPD TaxonNumber TA00046) and IHBB 9951 (=MTCC 12458=MCC 2794=JCM 31132=KACC 19073) is a reference strain. Copyright © 2017. Published by Elsevier GmbH.


July 7, 2019  |  

Complete genome sequence of Streptomyces sp. TN58, a producer of acyl alpha-L-rhamnopyranosides.

Streptomyces sp. TN58, isolated from a Tunisian soil sample, produces several natural products, including acyl alpha-l-rhamnopyranosides. It possesses a 7.6-Mb linear chromosome. This is, to our knowledge, the first genome sequence of a microorganism known to produce acyl alpha-l-rhamnopyranosides, and it will be helpful to study the biosynthesis of these specialized metabolites. Copyright © 2017 Najah et al.


July 7, 2019  |  

Draft genome sequences of Bacillus subtilis strain DKU_NT_01 isolated from traditional Korean food containing soybean (chung-gook-jang).

Here, we report the whole-genome sequence of Bacillus subtilis strain DKU_NT_01 isolated from traditional Korean food containing soybean (chung-gook-jang). The de novo genome of Bacillus subtilis strain DKU_NT_01 has one contig and G+C content of 55.4%, is 4,954,264 bp in length, and contains 5,011 coding sequences (CDSs). Copyright © 2017 Bang et al.


July 7, 2019  |  

Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus.

Xenorhabdus and Photorhabdus species dedicate a large amount of resources to the production of specialized metabolites derived from non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS). Both bacteria undergo symbiosis with nematodes, which is followed by an insect pathogenic phase. So far, the molecular basis of this tripartite relationship and the exact roles that individual metabolites and metabolic pathways play have not been well understood. To close this gap, we have significantly expanded the database for comparative genomics studies in these bacteria. Clustering the genes encoded in the individual genomes into hierarchical orthologous groups reveals a high-resolution picture of functional evolution in this clade. It identifies groups of genes-many of which are involved in secondary metabolite production-that may account for the niche specificity of these bacteria. Photorhabdus and Xenorhabdus appear very similar at the DNA sequence level, which indicates their close evolutionary relationship. Yet, high-resolution mass spectrometry analyses reveal a huge chemical diversity in the two taxa. Molecular network reconstruction identified a large number of previously unidentified metabolite classes, including the xefoampeptides and tilivalline. Here, we apply genomic and metabolomic methods in a complementary manner to identify and elucidate additional classes of natural products. We also highlight the ability to rapidly and simultaneously identify potentially interesting bioactive products from NRPSs and PKSs, thereby augmenting the contribution of molecular biology techniques to the acceleration of natural product discovery.


July 7, 2019  |  

Tryptorubin A: A polycyclic peptide from a fungus-derived Streptomycete.

Fungus-growing ants engage in complex symbiotic relationships with their fungal crop, specialized fungal pathogens, and bacteria that provide chemical defenses. In an effort to understand the evolutionary origins of this multilateral system, we investigated bacteria isolated from fungi. One bacterial strain (Streptomyces sp. CLI2509) from the bracket fungus Hymenochaete rubiginosa, produced an unusual peptide, tryptorubin A, which contains heteroaromatic links between side chains that give it a rigid polycyclic globular structure. The three-dimensional structure was determined by NMR and MS, including a (13)C-(13)C COSY of isotopically enriched material, degradation, derivatives, and computer modeling. Whole genome sequencing identified a likely pair of biosynthetic genes responsible for tryptorubin A’s linear hexapeptide backbone. The genome also revealed the close relationship between CLI2509 and Streptomyces sp. SPB78, which was previously implicated in an insect-bacterium symbiosis.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.