Menu
July 7, 2019  |  

Complete genome of a panresistant Pseudomonas aeruginosa strain, isolated from a patient with respiratory failure in a Canadian community hospital.

We report here the complete genome sequence of a panresistant Pseudomonas aeruginosa strain, isolated from a patient with respiratory failure in Canada. No carbapenemase genes were identified. Carbapenem resistance is attributable to a frameshift in the oprD gene; the basis for colistin resistance remains undetermined. Copyright © 2017 Xiong et al.


July 7, 2019  |  

Evolutionary origin of the staphylococcal cassette chromosome mec (SCCmec).

Several lines of evidence indicate that the most primitive staphylococcal species, those of the Staphylococcus sciuri group, were involved in the first stages of evolution of the staphylococcal cassette chromosome mec (SCCmec), the genetic element carrying the ß-lactam resistance gene mecA However, many steps are still missing from this evolutionary history. In particular, it is not known how mecA was incorporated into the mobile element SCC prior to dissemination among Staphylococcus aureus and other pathogenic staphylococcal species. To gain insights into the possible contribution of several species of the Staphylococcus sciuri group to the assembly of SCCmec, we sequenced the genomes of 106 isolates, comprising S. sciuri (n = 76), Staphylococcus vitulinus (n = 18), and Staphylococcus fleurettii (n = 12) from animal and human sources, and characterized the native location of mecA and the SCC insertion site by using a variety of comparative genomic approaches. Moreover, we performed a single nucleotide polymorphism (SNP) analysis of the genomes in order to understand SCCmec evolution in relation to phylogeny. We found that each of three species of the S. sciuri group contributed to the evolution of SCCmec: S. vitulinus and S. fleurettii contributed to the assembly of the mec complex, and S. sciuri most likely provided the mobile element in which mecA was later incorporated. We hypothesize that an ancestral SCCmec III cassette (an element carried by one of the most epidemic methicillin-resistant S. aureus clones) originated in S. sciuri possibly by a recombination event in a human host or a human-created environment and later was transferred to S. aureus. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

MHC class I diversity in chimpanzees and bonobos.

Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes A, B, C, and A-like in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.


July 7, 2019  |  

Designing robust watermark barcodes for multiplex long-read sequencing.

To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed.We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing. The manuscript focuses on the design of barcodes for full-length single-pass reads, impaired by challenging error rates in the order of 11%. The proposed barcodes can multiplex hundreds or thousands of samples while achieving sample misassignment probabilities as low as 10-7 under the above conditions, and are designed to be compatible with chemical constraints imposed by the sequencing process.Software tools for constructing watermark barcode sets and demultiplexing barcoded reads, together with example sets of barcodes and synthetic barcoded reads, are freely available at www.cifasis-conicet.gov.ar/ezpeleta/NS-watermark .ezpeleta@cifasis-conicet.gov.ar.


July 7, 2019  |  

Generation of a collection of mutant tomato lines using pooled CRISPR libraries.

The high efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mutagenesis in plants enables the development of high-throughput mutagenesis strategies. By transforming pooled CRISPR libraries into tomato (Solanum lycopersicum), collections of mutant lines were generated with minimal transformation attempts and in a relatively short period of time. Identification of the targeted gene(s) was easily determined by sequencing the incorporated guide RNA(s) in the primary transgenic events. From a single transformation with a CRISPR library targeting the immunity-associated leucine-rich repeat subfamily XII genes, heritable mutations were recovered in 15 of the 54 genes targeted. To increase throughput, a second CRISPR library was made containing three guide RNAs per construct to target 18 putative transporter genes. This resulted in stable mutations in 15 of the 18 targeted genes, with some primary transgenic plants having as many as five mutated genes. Furthermore, the redundancy in this collection of plants allowed for the association of aberrant T0 phenotypes with the underlying targeted genes. Plants with mutations in a homolog of an Arabidopsis (Arabidopsis thaliana) boron efflux transporter displayed boron deficiency phenotypes. The strategy described here provides a technically simple yet high-throughput approach for generating a collection of lines with targeted mutations and should be applicable to any plant transformation system.© 2017 American Society of Plant Biologists. All Rights Reserved.


July 7, 2019  |  

Archetype JC polyomavirus prevails in a rare case of JC polyomavirus nephropathy and in stable renal transplant recipients with JC polyomavirus viruria.

JC polyomavirus (JCPyV) is reactivated in approximately 20% of renal transplant recipients and it may rarely cause JCPyV-associated nephropathy (JCPyVAN). Whereas progressive multifocal leukoencephalopathy of the brain is caused by rearranged neurotropic JCPyV, little is known about viral sequence variation in JCPyVAN due to the rarity of this condition.Using single-molecule real-time sequencing, characterization of full-length JCPyV genomes from urine and plasma of one JCPyVAN patient and twenty stable renal transplant recipients with JCPyV viruria was attempted. Sequence analysis of JCPyV strains was performed with the emphasis on the NCCR region, the major capsid protein gene VP1 and the large T antigen (LTag) gene.Exclusively archetype strains were identified in urine of the JCPyVAN patient. Full-length JCPyV sequences were not retrieved from plasma. Archetype strains were found in urine of nineteen stable renal transplant recipients, with JCPyV quasispecies detected in five samples. In a patient with minor graft dysfunction, a strain with archetype-like NCCR region was discovered. Individual point mutations were detected in both VP1 and LTag genes.Archetype JCPyV was dominant in the JCPyVAN patient and in stable renal transplant recipients. Archetype rather than rearranged JCPyV seems to drive the pathogenesis of JCPyVAN.


July 7, 2019  |  

Filling reference gaps via assembling DNA barcodes using high-throughput sequencing-moving toward barcoding the world.

Over the past decade, biodiversity researchers have dedicated tremendous efforts to constructing DNA reference barcodes for rapid species registration and identification. Although analytical cost for standard DNA barcoding has been significantly reduced since early 2000, further dramatic reduction in barcoding costs is unlikely because Sanger sequencing is approaching its limits in throughput and chemistry cost. Constraints in barcoding cost not only led to unbalanced barcoding efforts around the globe, but also prevented high-throughput sequencing (HTS)-based taxonomic identification from applying binomial species names, which provide crucial linkages to biological knowledge. We developed an Illumina-based pipeline, HIFI-Barcode, to produce full-length Cytochrome c oxidase subunit I (COI) barcodes from pooled polymerase chain reaction amplicons generated by individual specimens. The new pipeline generated accurate barcode sequences that were comparable to Sanger standards, even for different haplotypes of the same species that were only a few nucleotides different from each other. Additionally, the new pipeline was much more sensitive in recovering amplicons at low quantity. The HIFI-Barcode pipeline successfully recovered barcodes from more than 78% of the polymerase chain reactions that didn’t show clear bands on the electrophoresis gel. Moreover, sequencing results based on the single molecular sequencing platform Pacbio confirmed the accuracy of the HIFI-Barcode results. Altogether, the new pipeline can provide an improved solution to produce full-length reference barcodes at about one-tenth of the current cost, enabling construction of comprehensive barcode libraries for local fauna, leading to a feasible direction for DNA barcoding global biomes.© The Authors 2017. Published by Oxford University Press.


July 7, 2019  |  

Genomic patterns of de novo mutation in simplex autism.

To further our understanding of the genetic etiology of autism, we generated and analyzed genome sequence data from 516 idiopathic autism families (2,064 individuals). This resource includes >59 million single-nucleotide variants (SNVs) and 9,212 private copy number variants (CNVs), of which 133,992 and 88 are de novo mutations (DNMs), respectively. We estimate a mutation rate of ~1.5 × 10(-8) SNVs per site per generation with a significantly higher mutation rate in repetitive DNA. Comparing probands and unaffected siblings, we observe several DNM trends. Probands carry more gene-disruptive CNVs and SNVs, resulting in severe missense mutations and mapping to predicted fetal brain promoters and embryonic stem cell enhancers. These differences become more pronounced for autism genes (p = 1.8 × 10(-3), OR = 2.2). Patients are more likely to carry multiple coding and noncoding DNMs in different genes, which are enriched for expression in striatal neurons (p = 3 × 10(-3)), suggesting a path forward for genetically characterizing more complex cases of autism. Copyright © 2017 Elsevier Inc. All rights reserved.


July 7, 2019  |  

A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella.

Xenoturbella is a group of marine benthic animals lacking an anus and a centralized nervous system. Molecular phylogenetic analyses group the animal together with the Acoelomorpha, forming the Xenacoelomorpha. This group has been suggested to be either a sister group to the Nephrozoa or a deuterostome, and therefore it may provide important insights into origins of bilaterian traits such as an anus, the nephron, feeding larvae and centralized nervous systems. However, only five Xenoturbella species have been reported and the evolutionary history of xenoturbellids and Xenacoelomorpha remains obscure.Here we describe a new Xenoturbella species from the western Pacific Ocean, and report a new xenoturbellid structure – the frontal pore. Non-destructive microCT was used to investigate the internal morphology of this soft-bodied animal. This revealed the presence of a frontal pore that is continuous with the ventral glandular network and which exhibits similarities with the frontal organ in acoelomorphs.Our results suggest that large size, oval mouth, frontal pore and ventral glandular network may be ancestral features for Xenoturbella. Further studies will clarify the evolutionary relationship of the frontal pore and ventral glandular network of xenoturbellids and the acoelomorph frontal organ. One of the habitats of the newly identified species is easily accessible from a marine station and so this species promises to be valuable for research on bilaterian and deuterostome evolution.


July 7, 2019  |  

Environmental changes bridge evolutionary valleys.

In the basic fitness landscape metaphor for molecular evolution, evolutionary pathways are presumed to follow uphill steps of increasing fitness. How evolution can cross fitness valleys is an open question. One possibility is that environmental changes alter the fitness landscape such that low-fitness sequences reside on a hill in alternate environments. We experimentally test this hypothesis on the antibiotic resistance gene TEM-15 ß-lactamase by comparing four evolutionary strategies shaped by environmental changes. The strategy that included initial steps of selecting for low antibiotic resistance (negative selection) produced superior alleles compared with the other three strategies. We comprehensively examined possible evolutionary pathways leading to one such high-fitness allele and found that an initially deleterious mutation is key to the allele’s evolutionary history. This mutation is an initial gateway to an otherwise relatively inaccessible area of sequence space and participates in higher-order, positive epistasis with a number of neutral to slightly beneficial mutations. The ability of negative selection and environmental changes to provide access to novel fitness peaks has important implications for natural evolutionary mechanisms and applied directed evolution.


July 7, 2019  |  

BAC-pool sequencing and assembly of 19 Mb of the complex sugarcane genome.

Sequencing plant genomes are often challenging because of their complex architecture and high content of repetitive sequences. Sugarcane has one of the most complex genomes. It is highly polyploid, preserves intact homeologous chromosomes from its parental species and contains >55% repetitive sequences. Although bacterial artificial chromosome (BAC) libraries have emerged as an alternative for accessing the sugarcane genome, sequencing individual clones is laborious and expensive. Here, we present a strategy for sequencing and assembly reads produced from the DNA of pooled BAC clones. A set of 178 BAC clones, randomly sampled from the SP80-3280 sugarcane BAC library, was pooled and sequenced using the Illumina HiSeq2000 and PacBio platforms. A hybrid assembly strategy was used to generate 2,451 scaffolds comprising 19.2 MB of assembled genome sequence. Scaffolds of =20 Kb corresponded to 80% of the assembled sequences, and the full sequences of forty BACs were recovered in one or two contigs. Alignment of the BAC scaffolds with the chromosome sequences of sorghum showed a high degree of collinearity and gene order. The alignment of the BAC scaffolds to the 10 sorghum chromosomes suggests that the genome of the SP80-3280 sugarcane variety is ~19% contracted in relation to the sorghum genome. In conclusion, our data show that sequencing pools composed of high numbers of BAC clones may help to construct a reference scaffold map of the sugarcane genome.


July 7, 2019  |  

ABO allele-level frequency estimation based on population-scale genotyping by next generation sequencing.

The characterization of the ABO blood group status is vital for blood transfusion and solid organ transplantation. Several methods for the molecular characterization of the ABO gene, which encodes the alleles that give rise to the different ABO blood groups, have been described. However, the application of those methods has so far been restricted to selected samples and not been applied to population-scale analysis.We describe a cost-effective method for high-throughput genotyping of the ABO system by next generation sequencing. Sample specific barcodes and sequencing adaptors are introduced during PCR, rendering the products suitable for direct sequencing on Illumina MiSeq or HiSeq instruments. Complete sequence coverage of exons 6 and 7 enables molecular discrimination of the ABO subgroups and many alleles. The workflow was applied to ABO genotype more than a million samples. We report the allele group frequencies calculated on a subset of more than 110,000 sampled individuals of German origin. Further we discuss the potential of the workflow for high resolution genotyping taking the observed allele group frequencies into account. Finally, sequence analysis revealed 287 distinct so far not described alleles of which the most abundant one was identified in 174 samples.The described workflow delivers high resolution ABO genotyping at low cost enabling population-scale molecular ABO characterization.


July 7, 2019  |  

A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer.

Although human LINE-1 (L1) elements are actively mobilized in many cancers, a role for somatic L1 retrotransposition in tumor initiation has not been conclusively demonstrated. Here, we identify a novel somatic L1 insertion in the APC tumor suppressor gene that provided us with a unique opportunity to determine whether such insertions can actually initiate colorectal cancer (CRC), and if so, how this might occur. Our data support a model whereby a hot L1 source element on Chromosome 17 of the patient’s genome evaded somatic repression in normal colon tissues and thereby initiated CRC by mutating the APC gene. This insertion worked together with a point mutation in the second APC allele to initiate tumorigenesis through the classic two-hit CRC pathway. We also show that L1 source profiles vary considerably depending on the ancestry of an individual, and that population-specific hot L1 elements represent a novel form of cancer risk. © 2016 Scott et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic.

Transcription factors regulate their target genes by binding to regulatory regions in the genome. Although the binding preferences of TP53 are known, it remains unclear what distinguishes functional enhancers from nonfunctional binding. In addition, the genome is scattered with recognition sequences that remain unoccupied. Using two complementary techniques of multiplex enhancer-reporter assays, we discovered that functional enhancers could be discriminated from nonfunctional binding events by the occurrence of a single TP53 canonical motif. By combining machine learning with a meta-analysis of TP53 ChIP-seq data sets, we identified a core set of more than 1000 responsive enhancers in the human genome. This TP53 cistrome is invariably used between cell types and experimental conditions, whereas differences among experiments can be attributed to indirect nonfunctional binding events. Our data suggest that TP53 enhancers represent a class of unsophisticated cell-autonomous enhancers containing a single TP53 binding site, distinct from complex developmental enhancers that integrate signals from multiple transcription factors. © 2016 Verfaillie et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

First report of blaIMP-14 on a plasmid harboring multiple drug resistance genes in Escherichia coli ST131.

The blaIMP-14 carbapenem resistance gene has largely previously been observed in Pseudomonas aeruginosa and Acinetobacter spp. As part of global surveillance and sequencing of carbapenem-resistant E. coli, we identified an ST131 strain harboring blaIMP-14 within a class 1 integron, itself nested within a ~54kb multi-drug resistance region on an epidemic IncA/C2 plasmid. The emergence of blaIMP-14 in this context in the ST131 lineage is of potential clinical concern. Copyright © 2016 Stoesser et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.