Menu
September 22, 2019

Next generation sequencing technology: Advances and applications.

Impressive progress has been made in the field of Next Generation Sequencing (NGS). Through advancements in the fields of molecular biology and technical engineering, parallelization of the sequencing reaction has profoundly increased the total number of produced sequence reads per run. Current sequencing platforms allow for a previously unprecedented view into complex mixtures of RNA and DNA samples. NGS is currently evolving into a molecular microscope finding its way into virtually every fields of biomedical research. In this chapter we review the technical background of the different commercially available NGS platforms with respect to template generation and the sequencing reaction and take a small step towards what the upcoming NGS technologies will bring. We close with an overview of different implementations of NGS into biomedical research. This article is part of a Special Issue entitled: From Genome to Function. Copyright © 2014 Elsevier B.V. All rights reserved.


September 22, 2019

Transcriptomic study of Herpes simplex virus type-1 using full-length sequencing techniques

Herpes simplex virus type-1 (HSV-1) is a human pathogenic member of the Alphaherpesvirinae subfamily of herpesviruses. The HSV-1 genome is a large double-stranded DNA specifying about 85 protein coding genes. The latest surveys have demonstrated that the HSV-1 transcriptome is much more complex than it had been thought before. Here, we provide a long-read sequencing dataset, which was generated by using the RSII and Sequel systems from Pacific Biosciences (PacBio), as well as MinION sequencing system from Oxford Nanopore Technologies (ONT). This dataset contains 39,096 reads of inserts (ROIs) mapped to the HSV-1 genome (X14112) in RSII sequencing, while Sequel sequencing yielded 77,851 ROIs. The MinION cDNA sequencing altogether resulted in 158,653 reads, while the direct RNA-seq produced 16,516 reads. This dataset can be utilized for the identification of novel HSV RNAs and transcripts isoforms, as well as for the comparison of the quality and length of the sequencing reads derived from the currently available long- read sequencing platforms. The various library preparation approaches can also be compared with each other.


September 22, 2019

Identification of putative coffee rust mycoparasites using single molecule DNA sequencing of infected pustules.

The interaction of crop pests with their natural enemies is a fundament to their control. Natural enemies of fungal pathogens of crops are poorly known relative to those of insect pests despite the diversity of fungal pathogens and their economic importance. Currently, many regions across Latin America are experiencing unprecedented epidemics of coffee rust (Hemileia vastatrix). Identification of natural enemies of coffee rust could aid in developing management strategies or in pinpointing species that could be used for biocontrol. Here we characterize fungal communities associated with coffee rust lesions by single molecule DNA sequencing of fungal ribosomal RNA barcodes from leaf discs (˜28 mm(2)) containing rust lesions and control discs with no rust lesions. The leaf disc communities were hyper-diverse in fungi, with up to 57 taxa per control disc, and the diversity was only slightly reduced in rust-infected discs. However, geography had a greater influence on the fungal community than whether the disk was infected by coffee rust. Through comparisons between control and rust-infected leaf discs, as well as taxonomic criteria, we identified 15 putative mycoparasitic fungi. These fungi are concentrated in fungal family Cordycipitaceae and order Tremellales. These data emphasize the complexity of fungal diversity of unknown ecological function within a leaf that might influence plant disease epidemics or lead to the development of species for biocontrol of fungal disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


September 22, 2019

Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks.

Nearly a quarter of emerging infectious diseases identified in the last century are arthropod-borne. Although ticks and insects can carry pathogenic microorganisms, non-pathogenic microbes make up the majority of their microbial communities. The majority of tick microbiome research has had a focus on discovery and description; very few studies have analyzed the ecological context and functional responses of the bacterial microbiome of ticks. The goal of this analysis was to characterize the stability of the bacterial microbiome of Dermacentor andersoni ticks between generations and two populations within a species.The bacterial microbiome of D. andersoni midguts and salivary glands was analyzed from populations collected at two different ecologically distinct sites by comparing field (F1) and lab-reared populations (F1-F3) over three generations. The microbiome composition of pooled and individual samples was analyzed by sequencing nearly full-length 16S rRNA gene amplicons using a Pacific Biosciences CCS platform that allows identification of bacteria to the species level.In this study, we found that the D. andersoni microbiome was distinct in different geographic populations and was tissue specific, differing between the midgut and the salivary gland, over multiple generations. Additionally, our study showed that the microbiomes of laboratory-reared populations were not necessarily representative of their respective field populations. Furthermore, we demonstrated that the microbiome of a few individual ticks does not represent the microbiome composition at the population level.We demonstrated that the bacterial microbiome of D. andersoni was complex over three generations and specific to tick tissue (midgut vs. salivary glands) as well as geographic location (Burns, Oregon vs. Lake Como, Montana vs. laboratory setting). These results provide evidence that habitat of the tick population is a vital component of the complexity of the bacterial microbiome of ticks, and that the microbiome of lab colonies may not allow for comparative analyses with field populations. A broader understanding of microbiome variation will be required if we are to employ manipulation of the microbiome as a method for interfering with acquisition and transmission of tick-borne pathogens.


September 22, 2019

Anthropogenic N deposition alters the composition of expressed class II fungal peroxidases.

Here, we present evidence that ca. 20 years of experimental N deposition altered the composition of lignin-decaying class II peroxidases expressed by forest floor fungi, a response which has occurred concurrently with reductions in plant litter decomposition and a rapid accumulation of soil organic matter. This finding suggests that anthropogenic N deposition has induced changes in the biological mediation of lignin decay, the rate limiting step in plant litter decomposition. Thus, an altered composition of transcripts for a critical gene that is associated with terrestrial C cycling may explain the increased soil C storage under long-term increases in anthropogenic N deposition.IMPORTANCE Fungal class II peroxidases are enzymes that mediate the rate-limiting step in the decomposition of plant material, which involves the oxidation of lignin and other polyphenols. In field experiments, anthropogenic N deposition has increased soil C storage in forests, a result which could potentially arise from anthropogenic N-induced changes in the composition of class II peroxidases expressed by the fungal community. In this study, we have gained unique insight into how anthropogenic N deposition, a widespread agent of global change, affects the expression of a functional gene encoding an enzyme that plays a critical role in a biologically mediated ecosystem process. Copyright © 2018 American Society for Microbiology.


September 22, 2019

Research benefits of storing genitourinary samples: 16S rRNA sequencing to evaluate vaginal bacterial communities.

Using well-characterised, but old and carefully frozen genital tract research samples may be a cost-effective way of performing metagenomic studies, but risks loss of low abundance (but relevant) bacterial species DNA. Moi et al.1 used 16S rRNA and UreDNA sequencing to detect ureaplasmas in frozen urine samples collected from 362 men with NGU in 2010–2011. They found that urethral inflammatory responses to ureaplasmas were less severe than to Chlamydia trachomatis and Mycoplasma genitalium.


September 22, 2019

Long-read sequencing of nascent RNA reveals coupling among RNA processing events.

Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2, the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3′ end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation.© 2018 Herzel et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019

Bypassing the Restriction System To Improve Transformation of Staphylococcus epidermidis.

Staphylococcus epidermidis is the leading cause of infections on indwelling medical devices worldwide. Intrinsic antibiotic resistance and vigorous biofilm production have rendered these infections difficult to treat and, in some cases, require the removal of the offending medical prosthesis. With the exception of two widely passaged isolates, RP62A and 1457, the pathogenesis of infections caused by clinical S. epidermidis strains is poorly understood due to the strong genetic barrier that precludes the efficient transformation of foreign DNA into clinical isolates. The difficulty in transforming clinical S. epidermidis isolates is primarily due to the type I and IV restriction-modification systems, which act as genetic barriers. Here, we show that efficient plasmid transformation of clinical S. epidermidis isolates from clonal complexes 2, 10, and 89 can be realized by employing a plasmid artificial modification (PAM) in Escherichia coli DC10B containing a ?dcm mutation. This transformative technique should facilitate our ability to genetically modify clinical isolates of S. epidermidis and hence improve our understanding of their pathogenesis in human infections.IMPORTANCEStaphylococcus epidermidis is a source of considerable morbidity worldwide. The underlying mechanisms contributing to the commensal and pathogenic lifestyles of S. epidermidis are poorly understood. Genetic manipulations of clinically relevant strains of S. epidermidis are largely prohibited due to the presence of a strong restriction barrier. With the introductions of the tools presented here, genetic manipulation of clinically relevant S. epidermidis isolates has now become possible, thus improving our understanding of S. epidermidis as a pathogen. Copyright © 2017 American Society for Microbiology.


September 22, 2019

Multi-platform analysis reveals a complex transcriptome architecture of a circovirus.

In this study, we used Pacific Biosciences RS II long-read and Illumina HiScanSQ short-read sequencing technologies for the characterization of porcine circovirus type 1 (PCV-1) transcripts. Our aim was to identify novel RNA molecules and transcript isoforms, as well as to determine the exact 5′- and 3′-end sequences of previously described transcripts with single base-pair accuracy. We discovered a novel 3′-UTR length isoform of the Cap transcript, and a non-spliced Cap transcript variant. Additionally, our analysis has revealed a 3′-UTR isoform of Rep and two 5′-UTR isoforms of Rep’ transcripts, and a novel splice variant of the longer Rep’ transcript. We also explored two novel long transcripts, one with a previously identified splice site, and a formerly undetected mRNA of ORF3. Altogether, our methods have identified nine novel RNA molecules, doubling the size of PCV-1 transcriptome that had been known before. Additionally, our investigations revealed an intricate pattern of transcript overlapping, which might produce transcriptional interference between the transcriptional machineries of adjacent genes, and thereby may potentially play a role in the regulation of gene expression in circoviruses. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019

Complete genome sequence of Petrimonas sp. strain IBARAKI, assembled from the metagenome data of a culture containing Dehalococcoides spp.

The complete genome sequence of Petrimonas sp. strain IBARAKI in a Dehalococcoides-containing culture was determined using the PacBio RS II platform. The genome is a single circular chromosome of 3,693,233 nucleotides (nt), with a GC content of 44%. This is the first genome sequence of a Petrimonas species. Copyright © 2018 Ikegami et al.


September 22, 2019

No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing.

Single-molecule real-time (SMRT) sequencing technology with the Pacific Biosciences (PacBio) RS II platform offers the potential to obtain full-length coding regions (~1100-bp) from MHC class I cDNAs. Despite the relatively high error rate associated with SMRT technology, high quality sequences can be obtained by circular consensus sequencing (CCS) due to the random nature of the error profile. In the present study we first validated the ability of SMRT-CCS to accurately identify class I transcripts in Mauritian-origin cynomolgus macaques (Macaca fascicularis) that have been characterized previously by cloning and Sanger-based sequencing as well as pyrosequencing approaches. We then applied this SMRT-CCS method to characterize 60 novel full-length class I transcript sequences expressed by a cohort of cynomolgus macaques from China. The SMRT-CCS method described here provides a straightforward protocol for characterization of unfragmented single-molecule cDNA transcripts that will potentially revolutionize MHC class I allele discovery in nonhuman primates and other species. Published by Elsevier Inc.


September 22, 2019

Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation.

Host factors in the intestine help select for bacteria that promote health. Certain commensals can utilize mucins as an energy source, thus promoting their colonization. However, health conditions such as inflammatory bowel disease (IBD) are associated with a reduced mucus layer, potentially leading to dysbiosis associated with this disease. We characterize the capability of commensal species to cleave and transport mucin-associated monosaccharides and identify several Clostridiales members that utilize intestinal mucins. One such mucin utilizer, Peptostreptococcus russellii, reduces susceptibility to epithelial injury in mice. Several Peptostreptococcus species contain a gene cluster enabling production of the tryptophan metabolite indoleacrylic acid (IA), which promotes intestinal epithelial barrier function and mitigates inflammatory responses. Furthermore, metagenomic analysis of human stool samples reveals that the genetic capability of microbes to utilize mucins and metabolize tryptophan is diminished in IBD patients. Our data suggest that stimulating IA production could promote anti-inflammatory responses and have therapeutic benefits. Copyright © 2017 Elsevier Inc. All rights reserved.


September 22, 2019

Atmospheric N deposition increases bacterial laccase-like multicopper oxidases: implications for organic matter decay.

Anthropogenic release of biologically available nitrogen (N) has increased dramatically over the last 150 years, which can alter the processes controlling carbon (C) storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan in the United States, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. This change occurred concomitantly with compositional changes in Basidiomycete fungi and in Actinobacteria, as well as the downregulation of fungal lignocelluloytic genes. Recently, laccase-like multicopper oxidases (LMCOs) have been discovered among bacteria which can oxidize ß-O-4 linkages in phenolic compounds (e.g., lignin and humic compounds), resulting in the production of dissolved organic carbon (DOC). Here, we examined how nearly 2 decades of experimental N deposition has affected the abundance and composition of saprotrophic bacteria possessing LMCO genes. In our experiment, LMCO genes were more abundant in the forest floor under experimental N deposition whereas the abundances of bacteria and fungi were unchanged. Experimental N deposition also led to less-diverse, significantly altered bacterial and LMCO gene assemblages, with taxa implicated in organic matter decay (i.e., Actinobacteria, Proteobacteria) accounting for the majority of compositional changes. These results suggest that experimental N deposition favors bacteria in the forest floor that harbor the LMCO gene and represents a plausible mechanism by which anthropogenic N deposition has reduced decomposition, increased soil C storage, and accelerated phenolic DOC production in our field experiment. Our observations suggest that future rates of atmospheric N deposition could fundamentally alter the physiological potential of soil microbial communities. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


September 22, 2019

Profiling of metabolome and bacterial community dynamics in ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or Lactobacillus buchneri.

Using gas chromatography mass spectrometry and the PacBio single molecule with real-time sequencing technology (SMRT), we analyzed the detailed metabolomic profiles and microbial community dynamics involved in ensiled Medicago sativa (alfalfa) inoculated without or with the homofermenter Lactobacillus plantarum or heterofermenter Lactobacillus buchneri. Our results revealed that 280 substances and 102 different metabolites were present in ensiled alfalfa. Inoculation of L. buchneri led to remarkable up-accumulation in concentrations of 4-aminobutyric acid, some free amino acids, and polyols in ensiled alfalfa, whereas considerable down-accumulation in cadaverine and succinic acid were observed in L. plantarum-inoculated silages. Completely different microbial flora and their successions during ensiling were observed in the control and two types of inoculant-treated silages. Inoculation of the L. plantarum or L. buchneri alters the microbial composition dynamics of the ensiled forage in very different manners. Our study demonstrates that metabolomic profiling analysis provides a deep insight in metabolites in silage. Moreover, the PacBio SMRT method revealed the microbial composition and its succession during the ensiling process at the species level. This provides information regarding the microbial processes underlying silage formation and may contribute to target-based regulation methods to achieve high-quality silage production.


September 22, 2019

Metataxonomics reveal vultures as a reservoir for Clostridium perfringens.

The Old World vulture may carry and spread pathogens for emerging infections since they feed on the carcasses of dead animals and participate in the sky burials of humans, some of whom have died from communicable diseases. Therefore, we studied the precise fecal microbiome of the Old World vulture with metataxonomics, integrating the high-throughput sequencing of almost full-length small subunit ribosomal RNA (16S rRNA) gene amplicons in tandem with the operational phylogenetic unit (OPU) analysis strategy. Nine vultures of three species were sampled using rectal swabs on the Qinghai-Tibet Plateau, China. Using the Pacific Biosciences sequencing platform, we obtained 54 135 high-quality reads of 16S rRNA amplicons with an average of 1442±6.9?bp in length and 6015±1058 reads per vulture. Those sequences were classified into 314 OPUs, including 102 known species, 50 yet to be described species and 161 unknown new lineages of uncultured representatives. Forty-five species have been reported to be responsible for human outbreaks or infections, and 23 yet to be described species belong to genera that include pathogenic species. Only six species were common to all vultures. Clostridium perfringens was the most abundant and present in all vultures, accounting for 30.8% of the total reads. Therefore, using the new technology, we found that vultures are an important reservoir for C. perfringens as evidenced by the isolation of 107 strains encoding for virulence genes, representing 45 sequence types. Our study suggests that the soil-related C. perfringens and other pathogens could have a reservoir in vultures and other animals.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.