September 22, 2019  |  

Profiling of metabolome and bacterial community dynamics in ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or Lactobacillus buchneri.

Authors: Guo, X S and Ke, W C and Ding, W R and Ding, L M and Xu, D M and Wang, W W and Zhang, P and Yang, F Y

Using gas chromatography mass spectrometry and the PacBio single molecule with real-time sequencing technology (SMRT), we analyzed the detailed metabolomic profiles and microbial community dynamics involved in ensiled Medicago sativa (alfalfa) inoculated without or with the homofermenter Lactobacillus plantarum or heterofermenter Lactobacillus buchneri. Our results revealed that 280 substances and 102 different metabolites were present in ensiled alfalfa. Inoculation of L. buchneri led to remarkable up-accumulation in concentrations of 4-aminobutyric acid, some free amino acids, and polyols in ensiled alfalfa, whereas considerable down-accumulation in cadaverine and succinic acid were observed in L. plantarum-inoculated silages. Completely different microbial flora and their successions during ensiling were observed in the control and two types of inoculant-treated silages. Inoculation of the L. plantarum or L. buchneri alters the microbial composition dynamics of the ensiled forage in very different manners. Our study demonstrates that metabolomic profiling analysis provides a deep insight in metabolites in silage. Moreover, the PacBio SMRT method revealed the microbial composition and its succession during the ensiling process at the species level. This provides information regarding the microbial processes underlying silage formation and may contribute to target-based regulation methods to achieve high-quality silage production.

Journal: Scientific reports
DOI: 10.1038/s41598-017-18348-0
Year: 2018

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.