Menu
September 22, 2019

Reduction in fecal microbiota diversity and short-chain fatty acid producers in Methicillin-resistant Staphylococcus aureus infected individuals as revealed by PacBio single molecule, real-time sequencing technology.

Methicillin-resistant Staphylococcus aureus (MRSA) may cause potentially lethal infections. Increasing evidence suggests that the gut microbiota is associated with human health. Yet, whether patients with MRSA infections carry specific signatures in their fecal microbiota composition has not been determined. Thus, this study aimed to compare the fecal microbiota profile of MRSA-positive patients (n=15) with individuals without MRSA infection (n=15) by using the PacBio single molecule, real-time (SMRT) DNA sequencing system and real-time quantitative polymerase chain reaction (qPCR). Mann-Whitney tests and unweighted UniFrac principal coordinate analysis (PCoA) showed that the profile of fecal microbiota was apparently different between the two populations. Both the community richness and diversity were reduced in the MRSA-positive group (p<0.050). The genera Acinetobacter and Enterococcus were highly enriched in the MRSA-positive group, whereas less short-chain fatty acid (SCFA)-producing bacteria, including Butyricimonas, Faecalibacterium, Roseburia, Ruminococcus, Megamonas and Phascolarctobacterium, were detected in the MRSA-positive group. At species level, the species Acinetobacter baumannii and Bacteroides thetaiotaomicron were prevalent in the MRSA-positive group, whereas opposite trends were observed in 17 other species, such as Faecalibacterium prausnitzii, Lactobacillus rogosae, Megamonas rupellensis and Phascolarctobacterium faecium. Positive correlations were observed between Acinetobacter baumannii and erythrocyte sedimentation rate (ESR) (R=0.554, p=0.001), as well as hypersensitive C reactive protein (hsCRP) (R=0.406, p=0.026). Faecalibacterium prausnitzii was negatively associated with ESR (R=-0.545, p=0.002), hsCRP (R=-0.401, p=0.028) and total bile acids (TBA) (R=-0.364, p=0.048). In conclusion, the fecal microbiota structure was different between MRSA-positive and -negative patients. The increase in potential pathogens with the reduction of beneficial populations, such as SCFA-producing bacteria, in MRSA-positive patients may affect prognosis.


September 22, 2019

Influenza virus infection causes global RNAPII termination defects.

Viral infection perturbs host cells and can be used to uncover regulatory mechanisms controlling cellular responses and susceptibility to infections. Using cell biological, biochemical, and genetic tools, we reveal that influenza A virus (IAV) infection induces global transcriptional defects at the 3′ ends of active host genes and RNA polymerase II (RNAPII) run-through into extragenic regions. Deregulated RNAPII leads to expression of aberrant RNAs (3′ extensions and host-gene fusions) that ultimately cause global transcriptional downregulation of physiological transcripts, an effect influencing antiviral response and virulence. This phenomenon occurs with multiple strains of IAV, is dependent on influenza NS1 protein, and can be modulated by SUMOylation of an intrinsically disordered region (IDR) of NS1 expressed by the 1918 pandemic IAV strain. Our data identify a strategy used by IAV to suppress host gene expression and indicate that polymorphisms in IDRs of viral proteins can affect the outcome of an infection.


September 22, 2019

Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis.

Propionibacterium acnes and Staphylococcus epidermidis live in close proximity on human skin, and both bacterial species can be isolated from normal and acne vulgaris-affected skin sites. The antagonistic interactions between the two species are poorly understood, as well as the potential significance of bacterial interferences for the skin microbiota. Here, we performed simultaneous antagonism assays to detect inhibitory activities between multiple isolates of the two species. Selected strains were sequenced to identify the genomic basis of their antimicrobial phenotypes.First, we screened 77 P. acnes strains isolated from healthy and acne-affected skin, and representing all known phylogenetic clades (I, II, and III), for their antimicrobial activities against 12?S. epidermidis isolates. One particular phylogroup (I-2) exhibited a higher antimicrobial activity than other P. acnes phylogroups. All genomes of type I-2 strains carry an island encoding the biosynthesis of a thiopeptide with possible antimicrobial activity against S. epidermidis. Second, 20?S. epidermidis isolates were examined for inhibitory activity against 25 P. acnes strains. The majority of S. epidermidis strains were able to inhibit P. acnes. Genomes of S. epidermidis strains with strong, medium and no inhibitory activities against P. acnes were sequenced. Genome comparison underlined the diversity of S. epidermidis and detected multiple clade- or strain-specific mobile genetic elements encoding a variety of functions important in antibiotic and stress resistance, biofilm formation and interbacterial competition, including bacteriocins such as epidermin. One isolate with an extraordinary antimicrobial activity against P. acnes harbors a functional ESAT-6 secretion system that might be involved in the antimicrobial activity against P. acnes via the secretion of polymorphic toxins.Taken together, our study suggests that interspecies interactions could potentially jeopardize balances in the skin microbiota. In particular, S. epidermidis strains possess an arsenal of different mechanisms to inhibit P. acnes. However, if such interactions are relevant in skin disorders such as acne vulgaris remains questionable, since no difference in the antimicrobial activity against, or the sensitivity towards S. epidermidis could be detected between health- and acne-associated strains of P. acnes.


September 22, 2019

Contrasting distribution patterns between aquatic and terrestrial Phytophthora species along a climatic gradient are linked to functional traits.

Diversity of microbial organisms is linked to global climatic gradients. The genus Phytophthora includes both aquatic and terrestrial plant pathogenic species that display a large variation of functional traits. The extent to which the physical environment (water or soil) modulates the interaction of microorganisms with climate is unknown. Here, we explored the main environmental drivers of diversity and functional trait composition of Phytophthora communities. Communities were obtained by a novel metabarcoding setup based on PacBio sequencing of river filtrates in 96 river sites along a geographical gradient. Species were classified as terrestrial or aquatic based on their phylogenetic clade. Overall, terrestrial and aquatic species showed contrasting patterns of diversity. For terrestrial species, precipitation was a stronger driver than temperature, and diversity and functional diversity decreased with decreasing temperature and precipitation. In cold and dry areas, the dominant species formed resistant structures and had a low optimum temperature. By contrast, for aquatic species, temperature and water chemistry were the strongest drivers, and diversity increased with decreasing temperature and precipitation. Within the same area, environmental filtering affected terrestrial species more strongly than aquatic species (20% versus 3% of the studied communities, respectively). Our results highlight the importance of functional traits and the physical environment in which microorganisms develop their life cycle when predicting their distribution under changing climatic conditions. Temperature and rainfall may be buffered differently by water and soil, and thus pose contrasting constrains to microbial assemblies.


September 22, 2019

Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats.

HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6.Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5′ read-in, splicing out of HIV89.6 from the D4 donor and 3′ read-through were the most common HIV89.6-host cell chimeric RNA forms.Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses.


September 22, 2019

Using PacBio long-read high-throughput microbial gene amplicon sequencing to evaluate infant formula safety.

Infant formula (IF) requires a strict microbiological standard because of the high vulnerability of infants to foodborne diseases. The current study used the PacBio single molecule real-time (SMRT) sequencing platform to generate full-length 16S rRNA-based bacterial microbiota profiles of thirty Chinese domestic and imported IF samples. A total of 600 species were identified, dominated by Streptococcus thermophilus, Lactococcus lactis and Lactococcus piscium. Distinctive bacterial profiles were observed between the two sample groups, as confirmed with both principal coordinate analysis and multivariate analysis of variance. Moreover, the product whey protein nitrogen index (WPNI), representing the degree of preheating, negatively correlated with the relative abundances of the Bacillus genus. Our study has demonstrated the application of the PacBio SMRT sequencing platform in assessing the bacterial contamination of IF products, which is of interest to the dairy industry for effective monitoring of microbial quality and safety during production.


September 22, 2019

Distinguishing highly similar gene isoforms with a clustering-based bioinformatics analysis of PacBio single-molecule long reads.

Gene isoforms are commonly found in both prokaryotes and eukaryotes. Since each isoform may perform a specific function in response to changing environmental conditions, studying the dynamics of gene isoforms is important in understanding biological processes and disease conditions. However, genome-wide identification of gene isoforms is technically challenging due to the high degree of sequence identity among isoforms. Traditional targeted sequencing approach, involving Sanger sequencing of plasmid-cloned PCR products, has low throughput and is very tedious and time-consuming. Next-generation sequencing technologies such as Illumina and 454 achieve high throughput but their short read lengths are a critical barrier to accurate assembly of highly similar gene isoforms, and may result in ambiguities and false joining during sequence assembly. More recently, the third generation sequencer represented by the PacBio platform offers sufficient throughput and long reads covering the full length of typical genes, thus providing a potential to reliably profile gene isoforms. However, the PacBio long reads are error-prone and cannot be effectively analyzed by traditional assembly programs.We present a clustering-based analysis pipeline integrated with PacBio sequencing data for profiling highly similar gene isoforms. This approach was first evaluated in comparison to de novo assembly of 454 reads using a benchmark admixture containing 10 known, cloned msg genes encoding the major surface glycoprotein of Pneumocystis jirovecii. All 10 msg isoforms were successfully reconstructed with the expected length (~1.5 kb) and correct sequence by the new approach, while 454 reads could not be correctly assembled using various assembly programs. When using an additional benchmark admixture containing 22 known P. jirovecii msg isoforms, this approach accurately reconstructed all but 4 these isoforms in their full-length (~3 kb); these 4 isoforms were present in low concentrations in the admixture. Finally, when applied to the original clinical sample from which the 22 known msg isoforms were cloned, this approach successfully identified not only all known isoforms accurately (~3 kb each) but also 48 novel isoforms.PacBio sequencing integrated with the clustering-based analysis pipeline achieves high-throughput and high-resolution discrimination of highly similar sequences, and can serve as a new approach for genome-wide characterization of gene isoforms and other highly repetitive sequences.


September 22, 2019

Analysis of microbial community structure of pit mud for Chinese strong-flavor liquor fermentation using next generation DNA sequencing of full-length 16S rRNA

The pit is the necessary bioreactor for brewing process of Chinese strong-flavor liquor. Pit mud in pits contains a large number of microorganisms and is a complex ecosystem. The analysis of bacterial flora in pit mud is of great significance to understand liquor fermentation mechanisms. To overcome taxonomic limitations of short reads in 16S rRNA variable region sequencing, we used high-throughput DNA sequencing of near full-length 16S rRNA gene to analyze microbial compositions of different types of pit mud that produce different qualities of strong-flavor liquor. The results showed that the main species in pit mud were Pseudomonas extremaustralis 14-3, Pseudomonas veronii, Serratia marcescens WW4, and Clostridium leptum in Ruminiclostridium. The microbial diversity of pit mud with different quality was significantly different. From poor to good quality of pit mud (thus the quality of liquor), the relative abundances of Ruminiclostridium and Syntrophomonas in Firmicutes was increased, and the relative abundance of Olsenella in Actinobacteria also increased, but the relative abundances of Pseudomonas and Serratia in Proteobacteria were decreased. The surprising findings of this study include that the diversity of intermediate level quality of N pit mud was the lowest, and the diversity levels of high quality pit mud G and poor quality pit mud B were similar. Correlation analysis showed that there were high positive correlations (r > 0.8) among different microbial groups in the flora. Based on the analysis of the microbial structures of pit mud in different quality, the good quality pit mud has a higher microbial diversity, but how this higher diversity and differential microbial compositions contribute to better quality of liquor fermentation remains obscure.


September 22, 2019

Long-term microbiota and virome in a Zürich patient after fecal transplantation against Clostridium difficile infection.

Fecal microbiota transplantation (FMT) is an emerging therapeutic option for Clostridium difficile infections that are refractory to conventional treatment. FMT introduces fecal microbes into the patient’s intestine that prevent the recurrence of C. difficile, leading to rapid expansion of bacteria characteristic of healthy microbiota. However, the long-term effects of FMT remain largely unknown. The C. difficile patient described in this paper revealed protracted microbiota adaptation processes from 6 to 42 months post-FMT. Ultimately, bacterial communities were donor similar, suggesting sustainable stool engraftment. Since little is known about the consequences of transmitted viruses during C. difficile infection, we also interrogated virome changes. Our approach allowed identification of about 10 phage types per sample that represented larger viral communities, and phages were found to be equally abundant in the cured patient and donor. The healthy microbiota appears to be characterized by low phage abundance. Although viruses were likely transferred, the patient established a virome distinct from the donor. Surprisingly, the patient had sequences of algal giant viruses (chloroviruses) that have not previously been reported for the human gut. Chloroviruses have not been associated with intestinal disease, but their presence in the oropharynx may influence cognitive abilities. The findings suggest that the virome is an important indicator of health or disease. A better understanding of the role of viruses in the gut ecosystem may uncover novel microbiota-modulating therapeutic strategies.© 2016 New York Academy of Sciences.


September 22, 2019

Long-read sequencing revealed an extensive transcript complexity in herpesviruses.

Long-read sequencing (LRS) techniques are very recent advancements, but they have already been used for transcriptome research in all of the three subfamilies of herpesviruses. These techniques have multiplied the number of known transcripts in each of the examined viruses. Meanwhile, they have revealed a so far hidden complexity of the herpesvirus transcriptome with the discovery of a large number of novel RNA molecules, including coding and non-coding RNAs, as well as transcript isoforms, and polycistronic RNAs. Additionally, LRS techniques have uncovered an intricate meshwork of transcriptional overlaps between adjacent and distally located genes. Here, we review the contribution of LRS to herpesvirus transcriptomics and present the complexity revealed by this technology, while also discussing the functional significance of this phenomenon.


September 22, 2019

Biogas production from hydrothermal liquefaction wastewater (HTLWW): Focusing on the microbial communities as revealed by high-throughput sequencing of full-length 16S rRNA genes.

Hydrothermal liquefaction (HTL) is an emerging and promising technology for the conversion of wet biomass into bio-crude, however, little attention has been paid to the utilization of hydrothermal liquefaction wastewater (HTLWW) with high concentration of organics. The present study investigated biogas production from wastewater obtained from HTL of straw for bio-crude production, with focuses on the analysis of the microbial communities and characterization of the organics. Batch experiments showed the methane yield of HTLWW (R-HTLWW) was 184 mL/g COD, while HTLWW after petroleum ether extraction (PE-HTLWW), to extract additional bio-crude, had higher methane yield (235 mL/g COD) due to the extraction of recalcitrant organic compounds. Sequential batch experiments further demonstrated the higher methane yield of PE-HTLWW. LC-TOF-MS, HPLC and gel filtration chromatography showed organics with molecular weight (MW) < 1000 were well degraded. Results from the high-throughput sequencing of full-length 16S rRNA genes analysis showed similar microbial community compositions were obtained for the reactors fed with either R-HTLWW or PE-HTLWW. The degradation of fatty acids were related with Mesotoga infera, Syntrophomonas wolfei et al. by species level identification. However, the species related to the degradation of other compounds (e.g. phenols) were not found, which could be due to the presence of uncharacterized microorganisms. It was also found previously proposed criteria (97% and 98.65% similarity) for species identification of 16S rRNA genes were not suitable for a fraction of 16S rRNA genes. Copyright © 2016 Elsevier Ltd. All rights reserved.


September 22, 2019

Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant.

The urbanization and industrialization of cities around the coastal region of the Bohai Sea have produced large amounts of sewage sludge from sewage treatment plants. Research on the biodegradation of nonylphenol (NP) and the influencing factors of such biodegradation during sewage sludge composting is important to control pollution caused by land application of sewage sludge. The present study investigated the effect of aeration on NP biodegradation and the microbe community during aerobic composting under two intermittent aeration treatments in a full-scale plant of sewage sludge, sawdust, and returned compost at a ratio of 6:3:1. The results showed that 65% of NP was biodegraded and that Bacillus was the dominant bacterial species in the mesophilic phase. The amount of NP biodegraded in the mesophilic phase was 68.3%, which accounted for 64.6% of the total amount of biodegraded NP. The amount of NP biodegraded under high-volume aeration was 19.6% higher than that under low-volume aeration. Bacillus was dominant for 60.9% of the composting period under high-volume aeration, compared to 22.7% dominance under low-volume aeration. In the thermophilic phase, high-volume aeration promoted the biodegradation of NP and Bacillus remained the dominant bacterial species. In the cooling and stable phases, the contents of NP underwent insignificant change while different dominant bacteria were observed in the two treatments. NP was mostly biodegraded by Bacillus, and the rate of biodegradation was significantly correlated with the abundance of Bacillus (r?=?0.63, p?


September 22, 2019

Impacts of experimentally accelerated forest succession on belowground plant and fungal communities

Understanding how soil processes, belowground plant and fungal species composition, and nutrient cycles are altered by disturbances is essential for understanding the role forests play in mitigating global climate change. Here we ask: How are root and fungal communities altered in a mid-successional forest during shifts in dominant tree species composition? This study utilizes the Forest Accelerated Succession ExperimenT (FASET) at the University of Michigan Biological Station (UMBS) as a platform for addressing this question. FASET consists of a 39-ha treatment in which all mature early successional aspen (Populus spp.) and paper birch (Betula papyrifera) were killed by stem-girdling in 2008. Four years after girdling, neither overall fungal diversity indices, plant diversity indices, nor root biomass differed between girdled (treated) and non-girdled (reference) stands. However, experimental advancement of succession by removal of aspen and birch resulted in 1) a shift in fungal functional groups, with significantly less ectomycorrhizal fungi, 2) a trend toward less arbuscular mycorrhizal fungi, and 3) a significant increase in the proportion of saprotrophs in girdled stands. In addition to shifts in functional groups between treated and untreated stands, ectomycorrhizal fungi proportions were negatively correlated with NH4+ and total dissolved inorganic nitrogen (DIN) in soil. This research illustrates the propensity for disturbances in forest ecosystems to shift fungal community composition, which has implications for carbon storage and nutrient cycling in soils under future climate scenarios.


September 22, 2019

Characterization of novel transcripts in pseudorabies virus.

In this study we identified two 3′-coterminal RNA molecules in the pseudorabies virus. The highly abundant short transcript (CTO-S) proved to be encoded between the ul21 and ul22 genes in close vicinity of the replication origin (OriL) of the virus. The less abundant long RNA molecule (CTO-L) is a transcriptional readthrough product of the ul21 gene and overlaps OriL. These polyadenylated RNAs were characterized by ascertaining their nucleotide sequences with the Illumina HiScanSQ and Pacific Biosciences Real-Time (PacBio RSII) sequencing platforms and by analyzing their transcription kinetics through use of multi-time-point Real-Time RT-PCR and the PacBio RSII system. It emerged that transcription of the CTOs is fully dependent on the viral transactivator protein IE180 and CTO-S is not a microRNA precursor. We propose an interaction between the transcription and replication machineries at this genomic location, which might play an important role in the regulation of DNA synthesis.


September 22, 2019

Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides.

Libraries of tens of thousands of transposon mutants generated from each of four human gut Bacteroides strains, two representing the same species, were introduced simultaneously into gnotobiotic mice together with 11 other wild-type strains to generate a 15-member artificial human gut microbiota. Mice received one of two distinct diets monotonously, or both in different ordered sequences. Quantifying the abundance of mutants in different diet contexts allowed gene-level characterization of fitness determinants, niche, stability, and resilience and yielded a prebiotic (arabinoxylan) that allowed targeted manipulation of the community. The approach described is generalizable and should be useful for defining mechanisms critical for sustaining and/or approaches for deliberately reconfiguring the highly adaptive and durable relationship between the human gut microbiota and host in ways that promote wellness. Copyright © 2015, American Association for the Advancement of Science.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.